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Lecture 3 

Possible, Impossible, and 
Extremal Spectra  

Can one hear the shape of a drum?  Of a potential? 

      Sometimes, yes.




But first...  How can you determine where the 
spectrum is discrete and where continuous? 



How can you determine where the spectrum is 
discrete and where continuous? 

 In QM, discrete eigenvalues are bound 
states,like the ones that are localized 
and last indefinitely as atomic energy 
levels 

 In QM, the continuous spectrum is 
associated with dynamic processes, 
such as scattering and electric current.  



How can you determine where the spectrum is 
discrete and where continuous? 

 A theorem of Weyl states that A and B 
have the same essential spectrum if  

   A-B is compact. 
 in practice, we more often establish that  
   (A + z)-1 - (B + z)-1 is compact.  This often 

entails showing that a certain integral is 
finite.  Example:  Any V(x) bounded and 
compactly supported is “relatively 
compact” with respect to  -∇2 .       



How can you determine where the spectrum is 
discrete and where continuous? 

 Suppose V(x) bounded and compactly 
supported, with negative integral on R. 
Then –d2/dx2 + V has a negative 
eigenvalue.  In QM this is a bound 
state.       



Proof 

1.  Because V is relatively compact, the essential 
spectrum ≥ 0.   

2.  Cook up a trial function ϕ which = 1 on supp V, but 
goes to 0 over a distance R from supp V.  We shall 
show that the Rayleigh quotient can be made 
negative.  Therefore there is spectrum below 0, 
and since it is not essential, it consists of one or 
more eigenvalues.             



Rayleigh quotient 

Since [H,G]uk = (H − λk)Guk,

‖[H,G]uk‖2 =
〈
Guk, (H − λk)

2Guk

〉

[
d

ds
, t

]
ϕ = κnϕ

In particular,

〈uk, [G, [H,G]] uk〉 = 2 〈Guk, (H − λk)Guk〉

R(ζ) =

∫
Ω (|∇ζ|2 + V (x)|ζ|2)dV∫

Ω |ζ|2dV

λn ∼ 4π

(
Γ(1 + d/2)n

|Ω|

)2/d

+
Vave

2

(z−λj) 〈uj, [G, [H,G]] uj〉−2‖ [H,G] uj‖2 =
∑

k

(z − λk)(λk − λj)| 〈uj, Guk〉 |2

q(x) = +
1

4

(
∑

j

κj

)2

Write the test function as

ζ =
1
√

ρ
· (
√

ρζ)

and use the product rule in the form

ψ(t) = e−iHtψ(0)

−∇2
‖ + q(x) = −∆Ω + q(x)
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1
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ρ
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ϕn ⇀ 0 with ‖ϕn‖ = 1, such that ‖(H − λ)ϕn‖ → 0.
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Some positive 

denominator


Negative numerator for 

large finite R




Application to nanotechnology 

 (Duclos-Exner)  Suppose we make a 
quantum wire by building a small tube 
of radius δ  →  0 around a smooth 
curve.  Unless the curve is absolutely 
straight, the effective potential –κ2/4 
is ≤0 and strictly negative on a set of 
positive measure.  Conclusion.... 



Do large eigenvalues exhibit any 
regular patterns? 



Do large eigenvalues exhibit any 
regular patterns? 

 Yes. According to a theorem of 
Hermann Weyl, if N(z) denotes the 
number of eigenvalues of -∇2 ≤ z, then 

(True whether Dirichlet problem on domain or manifold.)




Do large eigenvalues exhibit any 
regular patterns? 

 Yes. According to a theorem of 
Hermann Weyl, if N(z) denotes the 
number of eigenvalues of -∇2 ≤ z, then 



Do large eigenvalues exhibit any 
regular patterns? 

 For a Schrödinger operator -∇2 + V(x), 

 The high eigenvalues tell us the size of the 
domain and the average of the potential 



Are different eigenvalues more 
or less independent? 

 Ashbaugh-Benguria: λ2/λ1 is maximized 
uniquely by the ball. 

 Pólya conjecture:  The Weyl asymptotic 
formula for N(λ) is an upper bound for each 
finite λ.  (I.e., the estimate λk ~ C(k/|Ω|)2/d 
is a lower bound.) 

 Berezin-Li-Yau: The “integrated” version of 
Pólya for sums of eigenvalues is true.     



The top and the bottom of 
the spectrum are connected 



The top and the bottom of 
the spectrum are connected 

On a closed manifold, the lowest 
eigenvalue of -∇2 is trivial, since we 
know its spectrum is nonnegative, and 
we notice that  -∇2 1 = 0. 



The top and the bottom of 
the spectrum are connected 

   Consider H = -∇2 + V(x).  If we fix the 
integral of V, then the lowest 
eigenvalue λ1 is maximized when V is 
constant.  (Original 1-D theorem of this type was 
due to Ambarzumian, 1929.) 



The top and the bottom of 
the spectrum are connected 

   Consider H = -∇2 + V(x).  If we fix the 
integral of V, then the lowest 
eigenvalue λ1 is maximized when V is 
constant.  (Original 1-D theorem of this type was 
due to Ambarzumian, 1929.) 



Proof 

Recall the Rayleigh-Ritz inequality,  


              λ1 <ζ, ζ> ≤  <ζ, (-∇2 + V) ζ> 


And choose ζ = 1.  We see that  λ1 ≤ Vave.  V = cst is a case of 
equality.  To see that it is the unique such case, suppose that 


                -∇2 + V - Vave 

is a positive operator and use the spectral theorem to define B≥0    
such that B2 = -∇2 + V - Vave.  




Proof 

Calculate 


         ||B 1||2  =  <B 1, B 1>  =  <1, (-∇2+V- Vave)1>  =  0.


Therefore B 1 = 0 so 0 = B2 1 = V(x) - Vave.       QED.




What constraints does non-commutation 
place on the spectrum? 

 [A,B] := AB – BA 
 Heisenberg:  xp – px = i 



On a (hyper) surface, 
what object is most like 

the good old flat Laplacian? 



• Answer #1 (Beltrami’s answer):  Consider 
only tangential variations. 


• At a fixed point, orient Cartesian x0 with the 
normal, then calculate 




Difficulty: 

 The Laplace-Beltrami operator is an 
intrinsic object, and as such is 
unaware that the surface is 
immersed! 



 Answer #2 (The nanoanswer): 

                     - ΔLB + q 

  Perform a singular limit and 
renormalization to attain the surface 
as the limit of a thin domain. 



Difficulty: 

 Tied to a particular physical model - 
other effective potentials arise from 
other physical models or limits. 



Some other answers 

 In other physical situations, such as 
reaction-diffusion, q(x) may be other 
quadratic expressions in the 
curvature, usually q(x) ≤ 0.   

 The conformal answer:   q(x) is a 
multiple of the scalar curvature. 



Heisenberg's Answer 
(if he had thought about it) 



Heisenberg's Answer 
(if he had thought about it) 

Note:  q(x) ≥ 0   !




Commutators:   [A,B] := AB-BA 
3.  Curvature is the effect that motions do not 

commute: 



 More formally (from, e.g., Chavel, 
Riemannian Geometry, A Modern 
Introduction:  Given vector fields X,Y,Z 
and a connection ∇, the curvature 
tensor is given by: 

          R(X,Y)  = [∇Y ,∇X ]  - ∇[Y,X] 

Commutators:   [A,B] := AB-BA 



3a.   The equations of space curves are commutators: 

Commutators:   [A,B] := AB-BA 



Commutators:   [A,B] := AB-BA 
3a.   The equations of space curves are commutators: 

Note:  curvature is defined by a second commutator




The fundamental eigenvalue 
gap  

 In quantum mechanics, an excitation energy 
 In “spectral geometry” a geometric quantity 
    small gaps indicate decoupling (dumbbells) 
        (Cheeger, Yang-Yau, etc.) 
   large gaps indicate convexity/isoperimetric 
        (Ashbaugh-Benguria) 

                  Γ   :=    λ2 - λ1




Commutators and gaps 



Commutators and gaps 



Commutators and gaps 



A trace identity 



Canonical commutation 

Suppose now that H is a Schrödinger operator of standard 
type, H = - ∇2 + V(x), on a Euclidean domain, and that G is a 
Euclidean coordinate xk.  Then [H,G] = -2∂/∂ xk, and the 
second commutator [G, [H, G]] = 2 .   


Physical interpretation:  Up to scalar factors, [H,G] is a 
momentum, and [G, [H, G]] = 2 is a form of the Heisenberg 
commutation relation.


In 1925 Heisenberg used commutation to derive identities to 
explain the experimentally observed Thomas-Reiche-Kuhn 
sum rules.




Universal Bounds using Commutators 

 A “sum rule” identity (Harrell-Stubbe, 1997):  

Here, H is any Schrödinger operator on flat space, p is the 
gradient (times –i by physicist’s conventions)




Universal Bounds using Commutators 

• No sum on j  - multiply by f(λj), sum and 
symmetrize


• Numerator only kinetic energy - no 
potential.




Gap Lemma 



The Serret-Frenet equations 
as commutator relations: 





Sum on m and integrate.                                       QED








Bound is sharp for the circle: 



Gaps bounds  
and spectral identities 

for (hyper) surfaces 

Here h is the sum of the principal curvatures.




where




where




Bound is sharp for the 
sphere: 



Spinorial Canonical 
Commutation 



Spinorial Canonical 
Commutation 



Sum Rules 



Sum Rules 



Sharp universal bound  
for all gaps 



Submanifolds (arbitrary 
codimension) - with El Soufi & Ilias 



Submanifolds - Result is optimal 





Riesz means and how to 
get spectral 

information from them 

These ideas will be illustrated for the Laplacian on a 
Euclidean domain (joint work with L. Hermi).




Universal bounds  
of the form 

λk / λ1 

Bounds of this form follow from the bounds on λk+1, but 
with bad constants.




Universal bounds  
of the form 

λk / λ1 

Some previous work:




Universal bounds  
of the form 

λk / λ1 

Some previous work:


Ashbaugh-Benguria, 1994:


(Not Weyl type)




Hermi, TAMS to appear:




Cheng-Yang, Math. Ann., 2007:


where in its simplest form, C0 = (1 + 4/d).


When d=2, the CY bound is more than 4 times the Weyl 
asymptotics,




Ratios of Averages 



Ratios of Averages 



Ratios of Averages 





Riesz means 

                     Rσ(z) := ∑ (z-λk)+
σ for σ > 0.


When σ=0, interpret as limit from above, i.e. the spectral 
counting function.








Idea of proof 

Set f = (z-λk)+
σ, so the left side becomes Rσ, and notice that the 

first term on the right is comparable to 


          - cst ∑ (z-λk)+
σ-1 λk = cst (Rσ(z) - z Rσ-1(z))


                                           = cst Rσ(z) - cst z Rσ´(z)






Riesz means 
                     Rσ(z) := ∑ (z-λk)+

σ for σ > 0.


How is this related to moments of eigenvalues, like


                                    ∑   λk
τ    


or, equivalently, to averages such as


?




Legendre transform 

R1(z)


becomes ….




Legendre transform 



The End 


