Mathematics of Quantum

Mechanics on
Thin Structures

Evans Harrell

Georgia Tech
www.math.gatech.edu/~harrell

Marrakech
May, 2008

- FACULTE DES SCIENCES
A ET TECHNIQUES




[Lecture 3

___________

Possible, Impossible, and
Extremal Spectra

Can one hear the shope of 9 dram? OFf 2 potential?

oometimes, yes.



But fifst... How can you determine where the
spectrum is discrete and where continuous?



How can you determine where the spectrum is
| discrete and where continuous?

~+In QM, discrete eigenvalues are bound
states,like the ones that are localized
and last indefinitely as atomic energy
levels

+In QM, the continuous spectrum is
associated with dynamic processes,
such as scattering and electric current.



How can you determine where the spectrum is
| discrete and where continuous?

4+ A'theorem of Weyl states that A and B
have the same essential spectrum if

A-B is compact.
+in practice, we more often establish that

(A+z)'- (B+2z)'"is compact. This often
entails showing that a certain integral is
finite. Example: Any V(x) bounded and
compactly supported is “relatively
compact” with respect to -V?2.



How can you determine where the spectrum is
| discrete and where continuous?

4+ Suppose V(x) bounded and compactly
supported, with negative integral on R.
Then -d%/dx? + V has a negative
eigenvalue. In QM this is a bound

state.



Proof

Because V is relatively compact, the essential
spectrum > 0.

Cook up a trial function ¢ which =1 on supp V, but
goes to 0 over a distance R from supp V. We shall
show that the Rayleigh quotient can be made
negative. Therefore there is spectrum below 0,
and since it is not essential, it consists of one or
more eigenvalues.



Rayleigh quotient

Jo (IVE]* + V(x)[¢]*)dV
Jo [¢7AV

R(¢) =









Application to nanotechnology

-~ +(Duclos-Exner) Suppose we make a
quantum wire by building a small tube
of radius & — 0 around a smooth
curve. Unless the curve is absolutely
straight, the effective potential -k%/4
is <0 and strictly negative on a set of
positive measure. Conclusion....



Do large eigenvalues exhibit any
regular patterns?



Do large eigenvalues exhibit any
regular patterns?

4 Yes. According to a theorem of
Hermann Weyl, if N(z) denotes the
number of eigenvalues of -VZ < z, then
Cd‘Q‘Zd/Q

(2m)
Cy=7nY%2/T(1+d/2)

N(z) ~

(True whether Dirichlet problem on domain or manifold.)



Do large eigenvalues exhibit any
' regular patterns?

4 Yes. According to a theorem of
Hermann Weyl, if N(z) denotes the
number of eigenvalues of -VZ < z, then

2/d
A ~ 4 (F(l Tﬂﬁmfn)



Do large eigenvalues exhibit any
regular patterns?

- +For a Schrodinger operator - V2 + V(x),

F(l S d/2)n A Vave
n~4
n (SR

+The high eigenvalues tell us the size of the
domain and the average of the potential



Are different eigenvalues more
' or less independent?

4+ Ashbaugh-Benguria: A,/\, is maximized

~_uniquely by the ball.

+ Polya conjecture: The Weyl asymptotic
formula for N(A) is an upper bound for each
finite A. (l.e., the estimate A, ~ C(k/|Q])?/d
is a lower bound.)

+ Berezin-Li-Yau: The “integrated” version of
Polya for sums of eigenvalues is true.



The top and the bottom of
-.the spectrum are connected



The top and the bottom of
-.the spectrum are connected

-Ona closed manifold, the lowest
eigenvalue of - V2 is trivial, since we
know its spectrum is nonnegative, and
we notice that -V21 =0.



The top and the bottom of
-.the spectrum are connected

-~ Consider H = -V2 + V(x). If we fix the
integral of V, then the lowest
eigenvalue A, is maximized when V is

constant. (Original 1-D theorem of this type was
due to Ambarzumian, 1929.)



The top and the bottom of
-.the spectrum are connected

-~ Consider H = -V2 + V(x). If we fix the
integral of V, then the lowest
eigenvalue A, is maximized when V is

constant. (Original 1-D theorem of this type was
due to Ambarzumian, 1929.)



Proof

¥ R_Vec‘alll the Rayleigh-Ritz inequality,
7\1 <C,T>=< <C, (-VZ2+V) >

And choose C =1. We see that 7\.1 <V.. V=cstisacaseof

ave*
equality. To see that it 1s the unique such case, suppose that
q y q pp

V24+V-V,

1s a positive operator and use the spectral theorem to define B=0
such that B>=-V2?+V-V_ .



Proof

| Calculate

IB1II> = <B1,B1> = <1,(-V2+V-V_)I> = 0.
Therefore B1=0s00=B*1=V(x)-V,_.. QED.



What constraints does non-commutation
" place on the spectrum?

~ +[A,B] :=AB - BA
+Heisenberg: xp - px =1



On a (hyper) surface,
what object is most like
the good old flat Laplacian?



e Answer #1 (Beltrami’s answer): Consider
only tangential variations.

At a fixed point, orient Cartesian x, with the
normal, then calculate
d

(92
o
0z ;

j=1




~ Difficulty:

+The Laplace-Beltrami operator is an
intrinsic object, and as such is
unaware that the surface is
immersed!



4+ Answer #2 (The nanoanswer):

- Ag t Q

+ Perform a singular limit and

renormalization to attain the surface
as the limit of a thin domain.



~ Difficulty:

+T1ed to a particular physical model -
other effective potentials arise from
other physical models or limits.



Some other answers

~+In other physical situations, such as
reaction-diffusion, q(x) may be other
quadratic expressions in the
curvature, usually q(x) < 0.

+The conformal answer: q(x) is a
multiple of the scalar curvature.



Heisenberg's Answer
(if he had thought about it)

| 2
q(x) = 3 (Z ’fj)



Heisenberg's Answer
(if he had thought about it)

| 2
q(x) = 3 (Z ’fj)

Note: q(x)=0 !



Commutators [A,B] := AB-BA

| 3 Curvature is the effect that motions do not

“commute:



Commutators: [A,B] := AB-BA

~+More formally (from, e.g., Chavel,
Riemannian Geometry, A Modern
Introduction: Given vector fields X,Y,Z
and a connection V, the curvature
tensor is given by:

R(X,Y) =[Vy,Vx] - Vi



Commutators: [A,B] := AB-BA

- 3a. The equations of space curves are commutators:

dx

ds

dt
-— = K11
ds



Commutators [A,B] := AB-BA

| 3 The equations of space curves are commutators:

i t
—— =

dg? Sp 90
d t n
— — K
dS’ gp 90

Note: curvature 1s defined by a second commutator



The fundamental eigenvalue
sSap

"+ In quantum mechanics, an excitation energy
+ In “spectral geometry” a geometric quantity
small gaps indicate decoupling (dumbbells)
(Cheeger, Yang-Yau, etc.)
large gaps indicate convexity/isoperimetric
(Ashbaugh-Benguria)

I ———te a1



. El@]'l‘it?ﬂtﬁl‘)’ gap formula:
o (uj, [H, Glug) = (A\j — Ag) {uj, Gug) . (1.2)
Since (H, Glux = (H — M\)Gug,
[H, Glugll? = {;(;u,;. (— ) (;uk;} | (1.3)
and more generally

([H, G'}u“,-. H, Glu) = (Guj, (H — Aj) (H — M) Guy) . (1.4)
Second commutator formula:
(u; | [G,[H, G ug) = (Gu; | (2H — Xj — Ap) Guy) . (1.5)

In particular,

(uj | [G,[H, G u;) = 2 (Guy | (H=\;) Gu;). (1.6)



Commutators and gaps

T H, Glup = (H — M) Guy,

H[H, G]ukHQ — <Guk, (H _— )\k)QGuk>

In particular,



Commutators and gaps

ST o H, Glug, = (H — M) Gug,

H[H, G]ukHQ — <Guk, (H _— )\k)QGuk>

In particular,



A trace identity

(2=A3) (uy, |G, [H, Gl uj)—2|| [H, Gl w4

= > (2= M)k = X)) g, Gu) [



Canonical commutation

< _Suppose now that H 1s a Schrodinger operator of standard

" type, H=- V2 + V(x), on a Euclidean domain, and that G is a
Euclidean coordinate x,. Then [H,G] =-20/d x,, and the
second commutator [G, [H, G]] =2.

Physical interpretation: Up to scalar factors, [H,G] 1s a
momentum, and [G, [H, G]] = 2 is a form of the Heisenberg
commutation relation.

In 1925 Heisenberg used commutation to derive identities to
explain the experimentally observed Thomas-Reiche-Kuhn
sum rules.



~Universal Bounds using Commutators

f ~ + A“sum rule” identity (Harrell-Stubbe, 1997):

4 [(ug, pu;)| ;
e ™

d AL — Aj
VDY : J

Here, H 1s any Schrodinger operator on flat space, p 1s the
gradient (times —1 by physicist’s conventions)



~ Universal Bounds using Commutators

Sty Hupul

d Ak — Aj
Ve . J

* No sum on j - multiply by f(A;), sum and
symmetrize

 Numerator only kinetic energy - no
potential.



i Gap Lemma

Lemma 1.1 Let H be a positive self-adjoint operator with discrete eigenval-
ues Ay and Ay, Let P denote the orthogonal projection onto uwy. and suppose
G is a self-adjoint operator such that the products GP. G*P, HG*P, H*GP.
and GHGP are defined. Then the fundamental gap I' := T'(H) satisfies

[ (uy, G, [H,G)u1) < 2||[H, Glui|>. (1.7



The Serret-Frenet equations

as commutator relations:

! d? \m ; (1\,,, d ey
[H-. Xm] = —suse ) s e el 2 LA gy D ‘-‘Zf-m (2

ds? ds ds ds

Xm H Xm” o [m (‘2‘{)



Proposition 2.1 Let M be a smooth curve in RY, v =2 or 3. Then for

32
= %3 +V(s) and ¢ € Wy (M),
d 712 9
1% Y ;
Z ”[HaXm]'l,'f”E =4 / i 5 __}_|jal.3 d.
m=() J M ds 4



P}

Prnpnsitiﬂn 2.1 Let M be a smooth curve in R, v =2 or 3. Then for

H =~ :;i +V(s) and p € W (M),
ds
7 .12 R
d K g
> it xad ot =a [ (|2 + 1ot
=) e .

F

Proof. By closure it may be assumed that ¢ € C2°(M). Apply (2.2) to ¢
and square the result, to obtain

2

Sum on m and integrate. QED



- _.;,
i

Corollary 2.2 Let M be as in Proposition 2.1 and suppose that H is a
Schrodinger Hamiltonian with a bounded measurable potential V(s). Then

P<1/ a 2+'{22 d (2.5)
£ - —% LS. ot
== LA\ i e e :



Corollary 2.2 Let M be as in Proposition 2.1 and suppose that H is a
Schrodinger Hamiltonian with a bounded measurable potential V(s). Then

d- 2 2 ‘
I'<4 / (ﬁ) + h—uf ds. (2.5)
JM 1

ds

Furthermore, if H is of the form

Hg, := —ii; +gK2,
: ds il
then
I' < max (4, %) A (2.6)

FEquivalently, the universal ratio bound

ég < max (5, 1+ —1—>
A1 g

holds. This bound is sharp for 0 < g < ll



" Bound is sharp for the circle:

LI i)
Al Am2g g




Gaps bounds
| and spectral identities
for (hyper) surfaces

“oo et M be a d-dimensional manifold immersed in R?*!.

Theorem 3.1 Let H be a Schrodinger operator on M with a bounded po-
tential, i.e.,

H=-A+4YV, (3.1)
where V' is a bounded, measurable, real-valued function on M. If M has
a boundary, Dirichlel conditions are imposed (in the weak sense that H is
defined as the Friedrichs extension from C2°(M)). Then

| /'\\

['(H) < (1—1 /U (1|\— | |2 EE 11.2-'1@) dVol

1 h2 s
— { U], —A+ L uy ). (._3°2)
d 1

Here h is the sum of the principal curvatures.



Corollary 3.2 Let H be as in (3.1) and define ¢ := supy, (%: - ) Then

[(H) < 5 (0 +).



A further corollary is an isoperimetric spectral theorem for operators of
the form H, from (1.10):

Corollary 3.3 Let H, be defined on M, a d-dimensional manifold smoothly
immersed in R™, Then the eigenvalues satisfy

Ay— A1 < % (3.7)

d

1
where (0 = 111X (1, ) .



Bound is sharp for the
sphere:

== A1 =0d°, J=wgdtd

d2
dde — )y < ("—) —d.
gd



S Spinorial Canonical
e Commutation
d 1

d
P= tj— % —K;
1 ( J&S‘j Qth) (1 1)

5 :

and for a dense set of functions ¢,

1P| = (@, Hy ) - (4.2)



Spinorial Canonical
Commutation

Se 2z P=3 (4,0« bom) @)

gt

and for a dense set of functions ¢,
IPol? = (¢, Hijap) (12)
¥ Vs 1y 2.4

Thus P plays the role of a momentum operator, with which there is a version
of canonical commutation (cf. (1.9)) as follows. Defining a variant commuta-
tor bracket for operators L=(M) — Rd” Lz( M)by [A;B]:=A-B—B-A, a
=0 » ¥ 3 JEre L = . . —_— \ e —_— &t 4 & |
calculation shows that [P; Xper] = 307 i=1t; —;;-5—5— 1 (identity operator),
and by averaging on k,

1=~ [P:X] (4.3)

which is a coordinate-independent formula.



Sy Sum Rules
4' : -:. .’\, _-; #-‘..

Prop051t10n 4.1 Let H be as in (3.1), with eigenvalues { A} and normal-

azed- ezqwzfumt:ons {up}. Then

1 — —y E A ..'f.
n /\k = \ ('1 1)

ALFA;



S Sum Rules

~Pr0p051t10n 4 1 Let H be as in (3.1), with eigenvalues { .} and normal-

......

4 — |(ug,Puy)l? .
R 14
d ; - 44

ALFA;
Furthermore, if [ is any function summable on the spectrum o(H), then

x.

‘ 2 f Y /(/\A) A
Z Z | (tg, Puy)| /\ Ep (4.5)

]

)\}L +-)\



Sharp universal bound
for all gaps

NS Co'rollalf.y 4.4 b) For H, be of the form (1.10) on a smooth.

compact submanifold. Then

: & 4 p i e / _ 20N e —
I’\"‘/\7’ l ll C [(l g }7) /\n, ddy Dn_,)- (1 =% '“(7) /\ﬂ AL ]_—)n} ‘

with

This bound is sharp for every non-zero eigenvalue gap of Hy on the
4

sphere.



PO Submanifolds (arbitrary
cod:mens:on) with El Soufi & Ilias

N ‘sThemem d Let X : M — R™ be an isometric immersion. We

‘denote by h the mean curvature vector field of X (i.e the trace of
its second fundamental form). For any bounded potential q on M,

the spectrum of H = —A + q (with Dirichlet boundary conditions if
IM # 0) must satisfy, Yk > 1,

lm‘

‘(!.
(1) n Z(?\A'H —X)* <4 Z()\A‘*l — ;) (A=1;)

=l g—i

e RE ) 442
()l e fA_.[ ( 4 q | uU;



- Submanifolds - Result is optimal



s Th corem 3.1 Let M be S™ or FP™ and let X : M — M be an
\ w zmw Ifw immersion of mean curvature h. For any bounded potential
g lon .3[ ) the spectrum of H = —A, + q (with Dirichlet boundary
aonditzorna if OM # () must satzsfy Vk eN, k>1,

5 e = 202 <43 e = M) (M +3)

= S . =]
- there ; : ‘j“ |h| + c(n) — 4q)u;,

ey 2\ 1 ¢ 21 <z , /7
(1) Axs1 < (1+;)Z;/\.‘+;Z;O}+ Dy
where N
. AL 2 L
Dy := ((l+ ;) Ezl:/\mt El_.;d')
k k
(i b

A lower bound is also possible along the lines of Theorem 2.1. As in
the previous section, the following simplifications follow easily:

Corollary 3.1 With the notation of Theorem 3.1 one has, Yk > 1,

4\ 1 {
e ol B s A |
Mg < (1+n)k;)\,+n 5

where 6 := Isup (|h]* + c(n) — 4q).



Rlesz means and how to
get spectral
information from them

These 1deas will be illustrated for the Laplacian on a
Euclidean domain (joint work with L. Hermi).



Universal bounds
of the form
A | A

Bounds of this form follow from the bounds on A, ,, but
with bad constants.



Universal bounds
of the form
A | A

Some previous work:



Universal bounds
of the form
A | A

Some previous work:

Ashbaugh-Benguria, 1994

)\ .9 \ m
g Jdi21

—— < | 5=

Al Jdji2-1.1

(Not Weyl type)



| ¥

R Herml,TAMS to appear:

/‘\ i ' / .3!1 ‘_,7 -
k1 o (1+(.) H2/ 2l

and

i “ Alrf

P
[o—
anlas
[



Cheng-Yang, Math. Ann., 2007:

Ak41

Al

< Co(d, k)ka

" where in its simplest form, Cy = (1 + 4/d).

When d=2, the CY bound 1s more than 4 times the Weyl
asymptotics,




Ratios of Averages

Ap = % ng’.k Ar

— | ‘

J e=;



. Ratios of Averages

L

144

,;. the means of the eigenvalues of the Dirichlet
Laplacian satisfy a (.LILLL-’(..-I,.S(L[ W ‘eyl-type bound,

1 dy 1
Ak/Aj <‘)( +4)
1+ 3

Corollaly 3.1 For k = j—%

(3.4)

=9 (]
AT
.| &
o

&t



. Ratios of Averages

1) (145)
144

AR Wy G AN
= < ) ‘ } vd | :-
AR ((d+1)(d+2)) G (3¢

Corollary 3.2 For k = d+

2d



14}

20

dd

il

d=4

bl

100

120

1<}

(1.4) (H)

(4.1)

(4.2)(C-Y)




Riesz means

R,(z) := X (z-\),° for 0 > 0.

When 0=0, interpret as limit from above, 1.e. the spectral
counting function.



s Theorem‘21 For) <o <2 andz > A,

A i\ d\ 1.

oo and consequently

S R, (2)

s a nondecreasing function of z.

For2 <o < oo and z > A\,

[\ 1
Ry 1(2) > (1 + 2‘—) “R,(2):

0

Ry(2) > (a + 4) LR, (2);

and consequently

is a nondecreasing function of z.

(2.2)

(2.3)






Idea of proof

j )\m A;
“Zf a2 3 10 } [Only a0 g,

A EJ A AmEJ =,
)\j'—réAm )‘qu

Set f = (z-A,),°, so the left side becomes R, and notice that the
first term on the right is comparable to

-cst Y (z-M), VA = cst (R (2) - zR_((2))
=cst R(z) - cst z R, (z)



s lererts”

Corollary23 For allo > 2 and z > (l + 27") A,

d
"2

W oeNT 4 2 7 L d |
Torgs i — ) N2 —— < R,(2) < Ld 0272, 2.11

['(o+ 1)
(47r)gI‘ (0 + 1+ f)

-

Ly, = (2.12)

[SS11-8

(2.16)

d 4 ds ] x
Rl(z) = ( 4) Rz( ) P e /\1 2,31»+ \

and,

R

AL 2
N(2) = Ro(2) > (1 + 4) ;l,jlfg(.z) > ((1 " _1) N ) : (2.17)



Riesz means

R, (z) := X (z-\),° for 0 > 0.

How is this related to moments of eigenvalues, like
DI

or, equivalently, to averages such as

— 3
Ak = k Zf'f-‘.’.k Ar




 Legendre transform

- 27 Legendre transform

i [/] (’u.-’) = S‘;}D {w: s /(3)}

d
4 d2 LA

)\1 T

o,

S8

R,(z) =

C

(d+4)"

becomes ....



———

~ Legendre transform

S i []) A + [w] A <

1+ 2

‘ . f! o E
2 (1+7 N, wita
ja \1+3§

=R [V

-

Meanwhile, for any w we can always find an integer & such that on the left
i S 144 ' :

side of (32), k=1 <w < k. Itk > jﬁ:} and if we let w approach k from
+3

below, we obtain from (3.2)

|

J

. = d 1%-_ ,

==






