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ABSTRACT. Quantum theory makes a sharp distinction between bound states
and scattering states, the former associated with point spectrum and the lat-
ter with continuous spectrum. Resonances associated with quasi-stationary
states bridge this distinction, and have posed mathematical challenges since
the beginning of the Schrédinger theory. Here the development of the mathe-
matical underpinnings of resonance theory in atomic physics is reviewed, with
particular reference to the role of the (DC) Stark effect, and time-independent
perturbations of bound states in the two-body problem in atomic and molec-
ular physics.

This review is dedicated to Barry Simon, whose vision in [160] laid out
a program of more than thirty years of rigorous mathematical research on
resonances and perturbation theory.
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1. Resonances in the Early Days of the Schrodinger Theory

It was a perturbation calculation that convinced physicists that Schrodinger’s
theory was superior to the earlier quantum theory of Bohr and Sommerfeld based on
phase integrals. The old quantum theory provided an explanation for the spectral
lines of isolated hydrogen, but there was no easy or systematic procedure to han-
dle perturbations of exactly integrable models. Schrédinger considered the Stark
effect [175, 116, 108], the shifts caused to hydrogen’s emission spectrum by the
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application of a constant electric field, in 1926 [153]. In Schrodinger’s model the
energies are eigenvalues of the hydrogen Stark Hamiltonian, which in scaled units
reads

1
-VZ 4+ - + K1 (1)

Schrodinger adapted Rayleigh’s [146] procedure for generating the Taylor series
in powers of k for the eigenvalues and eigenfunctions of a family of linear opera-
tors of the form Hy + kW. At first order he recaptured the formulae of Epstein
[45, 46] for the shifts in the spectral lines, and with the more systematic procedure
he was able to obtain second-order corrections and better agreement with exper-
iment. Although the Stark Hamiltonian was known to be separable in parabolic
coordinates, and to correspond to an integrable classical system [45, 46], it was
clear from Schrédinger’s procedure that separability and integrability played no es-
sential role in the calculation, and that perturbative corrections could be calculated
to arbitrary order. Due to this first major success of the Schrédinger theory, both
Schrédinger’s equation and his perturbation scheme were swiftly adopted, and the
old quantum theory was soon scrapped [33, 127]. (Notoriously reluctant to accept
the new theory was Stark [176] himself.) To this day the perturbation expansions
of Rayleigh and Schrodinger are easier to calculate and more successful than the
perturbation methods used in classical mechanics, on which the Bohr-Sommerfeld
theory was cobbled together.

Given the impact of Schrodinger’s analysis on the development of modern
physics, it is ironic to note much later proofs that:

e The operator (1) has no eigenvalues at all as soon as £ > 0 [181, 182, 15];
and

e The Taylor coefficients according to Schrédinger’s prescription follow a
precise asymptotic law [58, 68], and the radius of convergence of the
series is 0.

The quantum states observed in the Stark effect are not truly bound, but are
instead resonance phenomena, although Schrodinger did not recognize this in [153].
While resonances of classical oscillators formed part of the tool-kit of every physicist
at the dawn of quantum mechanics, it took some time for physicists to address or
even articulate the basic questions about quantum resonances:

1. What is the definition of a resonance energy?

2. Is there a “resonance state,” and how is it defined?

3. How can the resonance energy be calculated?

4. How can the time-decay of a resonance be quantified?

The first step was taken by Oppenheimer, in one of his earliest works [137].
Oppenheimer stated that the Stark Hamiltonian (1) had no eigenvalues, and rather
cavalierly cited an article of Weyl [187] with a loose connection to this claim.
He then attempted to calculate the rate of decay of the wave function associated
with the ground state of unperturbed hydrogen by approximating a solution to the
Schrodinger equation including the electric field and estimating a matrix element
connecting this state to the unperturbed hydrogen state. Although Oppenheimer
did not use the term “resonance,” he addressed the fourth question for the first
time within quantum theory, and implicitly considered something one could regard
as a resonance state, a special non-normalized solution of Schréodinger’s equation.
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Not long thereafter Weisskopf and Wigner [186] defined a resonance as a bump
in the graph of the scattering amplitude and explicitly connected it to the presence
of a pole in the analytic continuation of the scattering amplitude, located close to
the real frequency axis. The analogy they made was with a system of classical
damped oscillators, in which the Fourier transform of the displacement has a pole
in the complex plane at position wy — i%, contributing a Lorentzian line shape
proportional to

1
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in the response function. From the shape of the graph, I is referred to as the width
of the resonance.

With this analogy and the observed exponential decay in time of a radioactive
species, early resonance theorists attempted to fit the probability of decay of a
resonance state, perhaps as coupled to a radiation field, to an exponential function,
assuming that

| (Ug, exp(—itH)¥g) |* ~ Cexp(—Tt), (3)

where ¥ is some sort of resonance state. (In contrast, for generic scattering states,
polynomial decay in time is the most that can be expected [96, 92].) If the ansatz
of exponential decay in time is accepted, then formal arguments lead one to expect
that the T in (3) should be comparable to the T' in (2) and given by a version of
the Fermi Golden Rule [47], according to which to leading order T is proportional
to the square of a matrix element coupling the resonance state to the continuum.

A criticism of the usual formal arguments for (3) is to be found in [161, 148].
Although early arguments for the exponential-decay ansatz were rather vague about
what constitutes the resonance state ¥, in practice it was often chosen as an eigen-
state of an unperturbed Hy, or as such an eigenstate corrected to some finite order
in perturbation theory. Alternatively, the left side of (3) might be replaced by the
projection of exp(—itH)¥q onto a set of continuum states localized near the energy
of ¥y. A difficulty with (3) is that it is one of those deep truths that are clearly
false! For small t the expression in (3) should behave as 1 —O(#?), which is inconsis-
tent with exponential decay. On the other hand, it can be shown that if (3) holds
for some ¥y € H as t — oo, then o(H) = R: Following Herbst [75] (see also [161]),
observe that (3) would imply that the spectral measure duy, := <\I/0, P(_Oo),\}\llo>
is absolutely continuous and has an analytic continuation to the strip {Im < g} If
the support of duy, were not the whole real axis, then analytic continuation would
imply that dug, = 0 identically on the strip. Although exponential decay in time
is possible for the Stark effect Hamiltonian (1), for which the spectrum is R, it is
consequently excluded in typical situations where the Hamiltonian is bounded from
below, and the most that can be hoped for is transient exponential decay according
to (3). A more realistic expectation for the decay law is

(o, exp(—it H)Wo) = exp(—i(E — i['/2)t) + b(t), (4)

where the remainder b(¢) is small for intermediate times but relatively significant
for small ¢ and dominant for large .

The physical mechanism of most resonances has generally been understood to
be the existence of a quasi-stationary state [24, 142] caused by perturbation of a
true bound state. Two variants of this mechanism are encountered:
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1. Shape resonances, which correspond to confinement of a particle by a
barrier, through which tunneling occurs, as in Gamow’s model of alpha
emission [54], in which the potential energy was a radial function pro-
portional to x(,<r<p}. The Stark effect may also be viewed as a kind of
shape resonance: Although the strength of the electric field may be small,
the perturbation interaction remains large somewhere far from the origin.
Conceptually, a shape resonance arises as a classical bound state liberated
by tunneling. Its signature is a very slow decay, with a characteristic time
identifiable with the reciprocal of T in (2).

2. Embedded bound states [134, 43] that “dissolve into the continuum” un-
der a slight perturbation. The most important model is that of the Auger
effect in helium. If the nucleus is treated as fixed in space and the electron-
electron interaction is neglected, then the helium spectrum is the set sum
of two scaled Balmer (hydrogen) spectra, consisting of negative bound
states at {—%} and a continuum covering the non-negative real values.
The continuous spectrum of this operator begins at —% and overlaps many
eigenvalues and thresholds. The introduction of the electron-electron in-
teraction destroys the symmetry of the operator and the embedded eigen-
values are expected to couple to the continuum and disappear. The decay
of resonances associated with embedded eigenvalues is not as slow as that
of shape resonances.

Other mechanisms can arise if the interaction depends on time (e.g., [190]), but
will not be pursued here.

There is a unified way to understand resonances and true eigenvalues of a
quantum Hamiltonian, namely, as poles of the resolvent operator (H — \)~! or its
integral kernel, the Green function. If the pole occurs on the real energy axis, it
corresponds to an eigenvalue in the usual way, but additional poles may occur when
the resolvent is analytically continued onto an “unphysical sheet.” Schrodinger
Hamiltonians are supposed to be self-adjoint and therefore have only real spectra,
but the non-real poles in the continued resolvent might be located at the eigenvalues
of some related non-self-adjoint operator. Non-real eigenvalues had been introduced
into physics as early as 1884 by Thomson [180], as a way to understand resonances
in electromagnetic theory, and they appeared in quantum scattering theory since
the 1950’s [115, 49], somewhat artificially. The idea of finding poles in the resolvent
as continued analytically across a branch cut on the real energy axis was introduced
by Schwinger in [155]. Although quite plausible, the connection between resonances
defined as poles of a continued resolvent and those defined as poles in the scattering
amplitude or zeroes in the Jost function was initially murky. (Theorems equating
them in some generality have been proved in, e.g., [66, 18].)

The next section of this review will recount some rigorous mathematical ap-
proaches to atomic resonances that were elaborated in one-dimensional and highly
symmetric models in the 1970’s and 80’s. Section 3 will describe later develop-
ments in which assumptions of symmetry were abandoned as more sophisticated
methods of scattering theory and PDEs became available. Finally, some alternative
approaches to resonance theory that have been developed will be mentioned.
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2. Mathematical Foundations of Quantum Resonance Theory and the
Analysis of One-Dimensional and Separable Models

In the 1930’s and 40’s, the work of Rellich [151] and Kato [101] put time-
independent perturbation theory for non-relativistic quantum theory on a firm
mathematical footing, particularly for Hamiltonians with discrete spectra. Fam-
ilies of operators depending on a coupling constant k were understood as analytic
functions of a complex variable, taking values in an operator algebra. Most of-
ten the family of operators has the form H, := Hy + kW, and if W is relatively
bounded, in the sense that D(W) D D(Hy) and there are constants a and b such
that for all f € D(Hy),

Wl < allHof[| + bl f[], (5)

then the spectral projectors of H,, for isolated subsets of the spectrum depend ana-
lytically on &, and consequently the eigenvalues of H,, can be analytically continued,
provided that they do not meet other parts of the spectrum.

Wave operators were introduced by Mgller in [126], which enabled Kato [102]
and Birman [22] to lay the mathematical foundations of quantum scattering theory
over the following decades (see [41, 147, 9, 135, 143, 82, 189]). Mgller’s work
was also the starting point for the development of acoustic scattering theory in the
hands of Lax and Phillips [113]. In the early period rigorous results about reso-
nance scattering were rare. One of the first topics connected with resonances to
receive attention was the mechanism whereby an eigenvalue could dissolve into the
continuum. In [50] Friedrichs discussed some simple models in which an eigenvalue
embedded in the continuum dissolves under a perturbation, and made connections
with quantum scattering theory. Soon afterwards Titchmarsh attempted to make
sense of the perturbation series that Schrodinger had developed for the Stark ef-
fect. In [181] he showed for the first time rigorously that a version of the Stark
Hamiltonian does not have any eigenvalues, and introduced the notion of spectral
concentration.

DEFINITION 1. Let H, be a sequence of self-adjoint operators with spectral
projectors F,(S). Let T and {S,} be subsets of R. Then the part of the spectrum
of H, in T is concentrated on S,, provided that

E.(T—-S, —0
in the strong sense. (The notation of [103] is followed here.)

Titchmarsh showed that the asymptotic series for Stark “eigenvalues,” as de-
rived by Schrédinger, defines nested intervals on which the spectrum of (1) is con-
centrated [182]. Spectral concentration gave some insight into the third basic
question of how the resonance energy can be calculated, at least in an asymptotic
sense.

Titchmarsh’s analysis was extended by Conley and Rejto [34] and by Rid-
dell [152]. Howland also analyzed spectral concentration in a variety of contexts
[85, 86, 87, 88]. In [133], Nenciu showed under wide circumstances that if the un-
perturbed operator has finitely degenerate eigenvalues in a given interval, then there
is spectral concentration near those eigenvalues to order p if and only if there is an
asymptotic basis of pseudo-eigenvectors to order p. Nenciu’s analysis included gen-
eral Stark Hamiltonians. Nenciu also showed that if there are pseudo-eigenvectors
to order p, then they remain quasi-stationary for a correspondingly long time. A
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perturbative treatment of resonances seemed, however, to offer little hope of a pre-
cise estimate of the rate of decay of a shape resonance, for which I' is not merely
“several million times” smaller than wg, as Weisskopf and Wigner marveled more
than once in [186], but, as an exponentially small function of s, identically 0 in
perturbation theory.

In addition to the limitations of spectral concentration for quantitative calcu-
lations, it was not even clear that spectral concentration could adequately be used
to define quantum resonance. Indeed, in 1975 Howland [89] showed that although
resonances imply spectral concentration, it is possible for spectral concentration to
occur in the absence of a corresponding singularity in a continued resolvent.

Howland is also credited with a fundamental insight about possible definitions
of a resonance. In contrast to Occam’s razor, which cuts away complications in
scientific theory, Howland’s razor cuts away simplicity. As formulated in [161],
this principle states:

No satisfactory definition of a resonance can depend only on the
structure of a single operator on an abstract Hilbert space.

For example, the family of Stark Hamiltonians (1) is unitarily equivalent for all
non-zero real x [15]. How could the energy or lifetime of the resonance depend on
K, if the definition were a unitary invariant?

Two key techniques opened the way to making sense of the perturbation series
for resonances and precisely calculating resonance widths in the 1960’s and 70’s:
complex scaling and summability methods. The inspiration of Aguilar, Balslev, and
Combes [6, 17] was to complexify Euclidean symmetry groups and to use analytic
continuation to define resonance energies as non-real eigenvalues of the family of
operators produced by conjugating the Hamiltonian with the complexified groups.
In the original version of complex scaling, Aguilar, Balslev, and Combes exploited
symmetry under dilatations. The unitary group of dilatations depends on a real pa-
rameter # such that x € R” — ex, hence [U(6) f] (x) := e"?/2f (e?x). For suitable
potentials one can treat 6 as a complex variable and regard Hy := U*(0)HU (0) as
an analytic family of operators. An easy calculation shows that if 8 is continued
off the real axis, the essential spectrum of the complex-scaled one-particle Lapla-
cian is simply rotated in the complex plane. Correspondingly, for a many-particle
free Hamiltonian, the essential spectrum becomes the union of rays in the complex
plane emanating from threshold energies. Assuming relative compactness for the
potential energy function, the same will be true for oess(Hyg). Meanwhile, by Kato—
Rellich perturbation theory, isolated eigenvalues of Hy are analytic in # and can be
continued as long as they remain isolated. The kicker is that variations of € in real
directions correspond to unitary transformations of Hy, so the spectrum is constant
with respect to such variations. An eigenvalue is therefore constant as a function
of # on any connected component of its domain of regularity. It follows that for
“dilatation-analytic” potentials, eigenvalues are independent of 8 except that they
may appear or disappear when the essential spectrum passes over them. Resonances
correspond to non-real eigenvalues of the complex-scaled operator. The complex-
scaling definition of a resonance thus complies with Howland’s razor, but without
special dependence on the introduced parameter. Resonance eigenvalues may well
depend on perturbation parameters x occurring in H, but in the usual situations
they are isolated and non-degenerate, and hence accessible to well-controlled per-
turbation expansions in powers of k. Complex scaling also offers a definition of a
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resonance state as the eigenfunction corresponding to a non-real eigenvalue and its
analytic continuation in 6.

In an influential article [160], Simon synthesized and clarified the theory of
resonances and dilatation analyticity, showing that it applies to important physical
models, including Coulomb and Yukawa interactions. This article cemented the
importance of complex scaling as a tool in quantum physics [31], and it has become
a standard reference in the physical literature for the mathematical underpinnings of
the technique (e.g., [150, 99, 23, 84, 27, 125, 40]). For mathematical physicists,
Simon articulated the challenge of a better understanding of the time-decay of
resonance and related matters:

The goals of the time-dependent theory are much more ambi-
tious than merely proving certain eigenvalues dissolve .... The
time-dependent theory is supposed to compute a characteristic
lifetime 7, for the decay of a state ... It turns out to be a very
hard problem to define the lifetime directly.

Simon identified a suitable interpretation of the Fermi Golden Rule for T" in (3) and
(4) as an estimate of the imaginary part of the Taylor coefficient as of a resonance
eigenvalue associated with a bound state at k = 0. (The coeflicient a; is real by first-
order perturbation theory.) Using Stone’s formula and second-order perturbation
theory, one can express the resonance width for a perturbed non-degenerate discrete
bound state as r J

5 =2 <<1>0, WP(A)W<I>0>‘/\:/\O, (6)
where ® is the unperturbed eigenfunction and P()) is the spectral projector for
(=00, A) \ { Ao}, cf. [148].

In the period around and following [160], analytic function theory helped to
clarify the issues raised in [160] and to unify the understanding of high-order per-
turbation theory, resonances, and complex scaling. Inspiration was drawn from the
detailed understanding of the eigenvalues A, (%) of the one-dimensional anharmonic
oscillator

p? + 22 + kot (7)
and their analytic continuations that had been achieved beginning with the work
of Bender and Wu [19]. Bender and Wu had observed that the perturbation coef-
ficients for an eigenvalue A(x) as functions of k can be efficiently calculated with a
difference equation, and the perturbation series diverges. They also tied the analysis
of the functions A;(g) to the WKB approximation of semiclassical quantum me-
chanics (more accurately called the Liouville-Green approximation [114, 64, 136]).

At that time a popular method for interpreting divergent series was Padé ap-
proximation, and in [119] it was proved that the diagonal Padé approximants for
the anharmonic oscillator perturbation series converge to the eigenvalues. After-
wards, Graffi, Grecchi, and Simon [61] noted that an understanding of the domain
of analyticity of the eigenvalues [159, 118] and control on the growth in n of a,
allow the use of Borel summation to define a unique analytic function f(x) to which
the series is asymptotic in a sector. (The Borel sum works by summing the series
with a,, replaced by ﬁ, then analytically continuing onto the positive real axis,
and recovering f(x) with a Laplace transform.) The Borel sum became a stan-
dard method that in due course was adapted for many other classic models where
the perturbation series diverges, including the Zeeman effect [14, 13, 16|, and



8 EVANS M. HARRELL

the hydrogen molecular ion [38, 60], which resemble the anharmonic oscillator in
that discrete eigenvalues remain discrete under singular perturbation. The idea of
a “Bender—Wu theory” relating high-order perturbation theory, summation meth-
ods, and tunneling for the complex eigenvalues in resonance models [19, 20, 21]
was made plausible by considering (7) when & is continued to negative values, in
which case, at least at the formal level, the model exhibits non-real eigenvalues
and quasi-stationary states. In [159] Simon showed that Taylor coefficients a,, are
proportional to the moments on the negative x axis of the imaginary part of the
continued anharmonic oscillator eigenvalues. In resonance models, given the ability
to displace the essential spectrum and analytically continue the resolvent to a sec-
ond sheet, where resonances can be defined as eigenvalues, an analogous formula
can often be derived with Cauchy’s theorem. For the Stark effect it reads [77, 68]

1 R
Aoy, = ——/ k20 (k)dk + O(R™2™).
™ Jo
In the remainder of the 1970’s, the vision of a perturbation theory of resonances

advanced rapidly, with

e Avron and Herbst’s analysis of Stark Hamiltonians using translation and
dilatation analyticity [15, 74];

e A Bender—Wu analysis of high-order perturbation theory and summability
for Stark resonances [77, 58, 161, 158, 59, 78]; and

e Precise tunneling asymptotics for the resonance widths for the Stark effect,
i.e., the (corrected) Oppenheimer formula [191, 68],

among other mileposts. By the end of the decade, most of the standard models
of quantum resonance brought about by perturbations of eigenvalues were mathe-
matically well-understood. The general theory, however, left much to be desired.
Dilatation analycity was an oddly strict condition to put on the potential energy
for a number of reasons. First, from the point of view of operator theory, the re-
solvent (H — \)~! is already an analytic function of A on the resolvent set of H,
without regard to the details of H, such as whether its coefficients depend analyt-
ically on auxiliary parameters in H that have nothing to do with A. It does not
help much that some such parameter, like € in the dilatation argument, is intro-
duced ad hoc, even if resonance eigenvalues are independent of 8, but for whether
or not they exist. Second, the special assumptions needed to achieve the magical
results of complex scaling excluded some of the simplest models, like those where
the potential is radial and of compact support, in which case the original version
of dilatation-analyticity is not able to encompass the familiar use of the Sommer-
feld outgoing radiation condition [174] to define a resonance state. In [162] Simon
proposed the method of exterior complex scaling to respond to this shortcoming.
Many other variants of complex scaling, relying on other symmetries or localizing
in other ways, were introduced in due course (e.g., [81, 71]). The method reached
its culmination in the 1980’s in the hands of Hunziker [90, 82].

The really sharp results attained by 1980 on high-order perturbation theory and
estimates of exponentially small quantities like I were restricted to one-dimensional,
separable, or otherwise highly symmetric Hamiltonians, usually for one particle.
This restriction was not so much due to a shortcoming of the theory of resonances
as it was due to the method of calculation. In a circumstance where I' is expo-
nentially small, the difficulty is to disentangle it from the perturbation expansion
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for the energy, despite I' being smaller than the perturbative error at all orders.
A successful strategy for accomplishing this is to use integral identities for T' in
terms of an identifiable resonance eigenfunction, and then estimate the exponential
growth of the latter with sufficient accuracy.

For example, suppose that one has identified a resonance with a non-real eigen-
value \ — zg and, with the aid of complex scaling, has picked out a canonical
“resonance solution” @, solving (—A + V(x))®, = (A —i%)®,, where V is a real-
valued potential function. Of course ®, is not normalizable in L2, but one can
multiply by ®, and integrate over a finite region S. With Green’s identity, it is

easily calculated that

r/ |®,|2d"x = 2/ Im (2,®,)d" 'a. (8)
S oS

Thus with a good choice of S and uniform control on the resonance solution ®,.,
an estimate of I' can be obtained, which is accurate in proportion to the pointwise
accuracy with which @, is known.

In that period, excellent techniques were available for uniform approximation of
solutions to ordinary differential equations (e.g., [136]), including ones that grew or
decayed exponentially, but not for partial differential equations. Not only are geo-
metric complications minimal for ordinary differential equations, but, most usefully,
the solution space of the time-independent Schrodinger equation is two-dimensional.
With the Wronski identity, variation of parameters, etc., a plethora of explicit rela-
tions can be found for special solutions, whether for their dependence on the position
x or on a spectral parameter. In the case of the Stark effect and other separable
problems, uniform approximation of solutions of ordinary differential equations en-
abled the proof of “tunneling” formulae like the corrected Oppenheimer formula
[68].

One of the earliest canonical models of the subject, shape resonance, was rel-
atively late to receive rigorous mathematical analysis. This model was introduced
in the 1920’s by Gamow [54] and by Gurney and Condon [65] to understand alpha
emission. A particle is supposed to be confined in a potential well surrounded by
a high potential barrier, outside of which the potential is zero, or at least tends
to zero. In the radially symmetric case one can separate variables and study the

operator
2

S HU() + BV () ©)

on L?(R™) with a Dirichlet boundary condition at the origin. The barrier V may
be supposed non-negative and strictly positive a.e. on its support, a finite interval
such as [1,2]. The operator (9) is considered in the strong-coupling limit, and as

[ — o0 it tends formally to
d2

2 +U(r) (10)
for r < 1, with a Dirichlet condition at » = 1. Outside the finite region, the time-
independent Schrodinger equation is identical to the Helmholtz equation obtained
by separating the wave equation, and Gamow imposed an outgoing radiation con-
dition on (9) equivalent to that used earlier by Sommerfeld [174] in his analysis
of the wave equation. (Thomson [180] had an even earlier version of an outgoing
radiation condition.) The outgoing condition was specifically connected with the

notion of a quantum resonance by Kapur and Peierls [100, 141] and Siegert [156],
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and is perhaps the most common way to define resonance states in the physical lit-
erature (e.g., [192, 108]). The outgoing radiation condition is precisely recovered
in the shape-resonance problem for compactly supported radial potentials when the
method of exterior complex scaling is brought to bear.

Ashbaugh and Harrell [11], using uniform approximation of solutions of ODEs
and the implicit function theorem, established in this situation that the eigenvalues
of (10) turn into eigenvalues or resonances of (9). A systematic perturbation theory
was developed, in fractional powers of 3, and exponentially small resonance widths
were calculated, using a version of (8).

Around this time another model that became popular was known as the Stark—
Wannier Hamiltonian, in which a periodic background potential is combined with
that of a constant electric field. Wannier introduced this model in 1960 [185], and
mathematical analysis was initiated by Herbst and Howland in [76]. Resonances
in this model occur in infinite evenly spaced “ladders,” and were studied with
perturbative methods analogous to those used for the more venerable canonical
models [2, 94, 62, 106, 10, 63, 29]

Estimates of the density and distribution of resonances go back in the physical
literature to Regge [149]. In one dimension, theorems of this form were obtained
by Melrose [122] and Zworski [193, 194, 195], who chose to define resonances
as poles of the analytic continuation of the S-matrix and obtained a Weyl-type
distribution result; and by Froese [51, 52], who preferred the Birman—Schwinger
kernel K (k) of |V (z)|/2sgn (V(z)) (Ho —I—/@2)71 |V (x)]*/2.  Actually, due to the
special features of ordinary differential equations, there are close connections among
Birman—Schwinger kernels, S-matrices, phase shifts, Jost functions, m-functions,
and Green functions, and consequently in one dimension resonances can be defined
more or less equivalently in terms of singularities or zeroes of complex functions
concocted from any of these. This point was brought out, for example, in an article
of Simon [164], which unified the results of Froese, Melrose, and Zworski by focusing
on the properties of the Fredholm determinant

d(k) :==det (1 + K(k)),

the zeroes of which correspond to resonances [122, 7, 56, 57, 194]. In addition
to estimates of the distribution of resonances of several one-dimensional models,
Simon obtained distribution estimates for antibound states.

3. Quantum Resonance Without Symmetries

In the last two to three decades the mathematical theory of quantum resonance
has broken free of the symmetries and special circumstances needed to make the
canonical models accessible. Advances have depended on three important devel-
opments: Better estimates of the growth properties of solutions of elliptic PDEs;
an application of the Schur complement of matrix theory to Schrédinger operators,
known in the trade as the Livsic-Feshbach matriz; and Mourre theory in scattering.

The understanding of solutions of the multidimensional Schrédinger equation
advanced in the 1980’s. The notion of an Agmon metric, as expounded in [3],
allows estimates of the exponential decay in space of Schrodinger wave functions
without separation of variables or other uses of symmetry. This construction is
quite general; for example, for a Schrédinger operator H, if one can find a function
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A(x) > 0 such that
H—-—p>Ax)>0 (11)

in the sense of quadratic forms, then solutions are governed by a metric p4 defined
by ds% = A(x)|dx|*>. Agmon’s essential result was that if (11) holds and a solution
1 of Hiy = p) has controlled growth in the sense that on an exterior domain €2,

/Q [2 exp (—2(1 - )pa(x)) dar < oo,

then on average it decays exponentially in the sense that

/Q [v[? exp (2(1 — €)pa(x)) dz < oo.

With epsilonic loss, Agmon’s theorem shows that when integrated, solutions of
the time-independent Schrodinger equation satisfy exponential-growth estimates
much like the familiar tunneling formulae in one dimension. Moreover, the function
A(x) provides flexibility to adapt the method to particular circumstances. Similar
estimates have been proved on adapted regions, such as exterior sectors [3], applied
to Green functions [39], etc.

Agmon’s techniques made estimates like (8) tractable in the absence of sep-
arability. In the hands of Helffer and Sjostrand [72], Simon [163], and others,
systematic asymptotic expressions for solutions of multidimensional Schrodinger
equations were developed in semiclassical limits, whether as a parameter 4 — 0 or
in other circumstances with a large or small parameter. Quantum resonances fig-
ured among the semiclassical phenomena on which these microlocal techniques were
brought to bear (e.g., [73]). Many articles of Helffer, Sjostrand, and collaborators
are synopsized in [70, 165, 107].

In the late 1980’s and 90’s, a number of the results on canonical models that had
been obtained with one-dimensional methods were re-obtained without symmetry
assumptions. Among these results were perturbation theory and width estimates
for shape and Stark resonances [73, 157, 95, 165, 71], and stability, resolvent
estimates, and perturbation theory for shape resonances without radial symmetry
[32, 81, 82]. In the same period, the notion of a resonance state as satisfying an
outgoing condition, or a truncated version of such a state, was further developed in
the multidimensional setting, and conditions were found under which exponential
decay in time (4) could be proved for such states [170, 171, 172, 91, 105, 112].

One of the earliest to appreciate the value of the LivSic—Feshbach matrix in
the theory of quantum resonances was Howland, who, in a somewhat overlooked
article [89], used it to develop a perturbation theory for resonances of self-adjoint
Schrodinger operators, arising from embedded eigenvalues. (Livsic had introduced
the matrix in relation to non-real eigenvalues of explicitly non-self-adjoint operators
[115]. Feshbach independently developed similar ideas in an article on resonance
theory for nuclear physics [49].) The power of the Livsic—Feshbach technique is
that the analysis of the spectrum of an infinite-dimensional operator is replaced
by that of a finite-dimensional operator, albeit one that depends on the spectral
parameter.

DEFINITION 2. Let H be self-adjoint and let P be a finite-dimensional projector
(normally the projector onto the unperturbed eigenvector v of a reference operator
Hy). The Livsic—Feshbach matriz is the finite-dimensional operator B(z) acting on
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K := Ran P such that
(B(z) —21)"' = P(H — 21)"'P, (12)
when the right side is “compressed” to K.

The matrix-valued function B(z) is meromorphic on the complement of the
essential spectrum of H and has only real singularities [89]. Provided that K C
D(H), the Hamiltonian H can be written as a block-partitioned operator with
respect to K and K+, and B(z) — z is, in the terminology of matrix theory, the
Schur complement of (1 — P)(H — 2)(1 — P) in H — z1 [154, 36, 42].

It follows by a calculation from (12) that, with P := (1 — P) and H := PHP,

B(z) = PHP — PHP(H — z)"'PHP. (13)

(Again, this formula is to be interpreted as compressed to K.) Replacing H by
Hy+ kW and taking P as the orthogonal projector corresponding to an eigenvalue
Ao € 0,(Hp) with normalized eigenvector ®¢ yields the Feshbach formula

B(z,k) = A1 + kPWP — k?F (2, k),

where F(z,k) = PWP(H — z)"'PWP [49]. When P is one-dimensional, B(z, k)
and F' reduce to scalar functions that satisfy

B(z,k) = Ao + K (®g, Wdg) — k2F(2, k). (14)

Observe that the first-order term is identical to that of Rayleigh—Schrodinger per-
turbation theory for the first-order correction to a non-degenerate eigenvalue, and
that —k?F(z, k) resembles the second-order correction. From (14) the leading-order
expression for the resonance width is found to be

r
3 = ~ImF (Ao +ic,0). (15)

In [89] Howland observed that the Livsic-Feshbach matrix allows an analogue
of Kato’s regular perturbation theory for non-isolated eigenvalues of a family of op-
erators H(k), and he demonstrated that this theory embraces not only the situation
of an isolated eigenvalue, but also perturbations of certain embedded eigenvalues
and resonances of complex-scaled Hamiltonians as in [160].

Howland’s work on the LivSic-Feshbach matrix was extended in the 1985 dis-
sertation of Orth and a related article [138]. There, a resonance is defined in the
model case of a non-degenerate unperturbed eigenvalue Ay as follows:

DEFINITION 3. Suppose that there exists a dense subspace H, containing /C,
W(K), and all possible eigenvectors of H(x). If for A in some neighborhood of \g
and x near 0, ((1— P)H(x)(1 — P)—1)~! can be continued analytically in z to the
real axis as a bounded operator from H4 onto its dual H_, and the continuation is
Lipschitz continuous with Lipschitz constant O(k~?2), then B(z, k) can likewise be
continued to the real axis, and the resonance eigenvalue near \q is the fixed point
of the equation

A(k) = B(A(K), A).

With this definition, Orth showed that resonances are associated with spectral
concentration, as in [89], and proved the existence of resonances for a large class
of many-body potentials. Orth required no ad hoc analyticity of the potential
with respect to dilatations. Instead, the dilatation group makes its appearance
in an assumption that products of its generator and the one-body potentials are
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bounded maps between appropriate Sobolev spaces. According to Mourre theory
[128, 97], this allows control on resolvents, localized in energy and space. Hence
the subspace H, can be taken as D(A?), where A is the symmetrized generator
of dilatations, % (z-V + V- ). The Howland-Orth definition of a resonance for
H (k) has become widely accepted.

Mourre theory refers to the use of local commutator estimates to prove that
quantum scattering is well-behaved. The role of commutators in scattering theory
dates from the 1960’s, when Putnam [145] showed that if there is a bounded self-
adjoint operator A such that B := i[H, A] > 0, and 0 is not an eigenvalue of B,
then the spectrum of H is purely absolutely continuous. Putnam’s theorem led
to many further developments, notably the theory of smooth perturbations in the
hands of Kato [104], Lavine [109], and others. Mourre’s innovation in [128] was
to localize Putnam’s condition in energy: Suppose that the commutator B satisfies
certain technical conditions, and that on some real interval A there exists a positive
number « and a compact operator K, such that

PABPA > aPa + K. (16)

Mourre discovered that under this condition H has no singular continuous spectrum
in A, and only finitely many eigenvalues in any compact subset of A. Moreover, if
K =0, then the expression

1A+ D7HH = X —i6) " (JA] + 1)~ (17)

remains bounded for A € A as § — 0T (see also [53, 144]). Mourre’s method was
extended to higher-order commutators and higher powers of resolvents in [97]. An
exposition of Mourre theory is to be found in [37].

Connections between Mourre theory and quantum resonances were first made
by Orth [138] in his many-body analysis, and by Herbst and Skibsted in the con-
text of the Stark effect [80]. Later, Soffer and Weinstein [173] posited an outright
hypothesis on the time-decay of exp(—iHot), when localized in space and in energy,
and under that assumption proved that embedded eigenvalues away from thresh-
olds dissolve into the continuum as resonances and decay according to a version of
(4), provided that T', as given by (6), satisfies a certain bound from below. (Ag-
mon, Herbst, and Skibsted had earlier shown in [5] that embedded eigenvalues are
generically unstable against perturbations.) The decay hypothesis of Soffer and
Weinstein is a familiar consequence related to (17) of a Mourre inequality, and
therefore holds under wide circumstances away from thresholds.

Soffer and Weinstein focused more on the notion of a resonance state than
did Howland and Orth. In particular, with the decay hypothesis on the propaga-
tor, the decay law (4) is shown to apply to all initial functions in the range of a
smoothed version of the spectral projector onto an interval A containing an un-
perturbed eigenvalue but no other part of the point spectrum of Hy. Most earlier
analyses of resonance states and their the time-evolution had defined them with
outgoing radiation conditions, and were consequently more restrictive. Some tech-
nical assumptions of Soffer and Weinstein were relaxed in [35]. In particular, given
sufficient regularity of the unperturbed resolvent, I" was required in [35] merely to
be positive rather than bounded away from zero in a specific way. Making similar
assumptions, Merkli and Sigal [124] considered the nature of a metastable state,
showing that any state suitably localized in energy can be written as the sum of a
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resonant part and a dispersive part. The resonant part will stay near the unper-
turbed state for a long time, and then decay according to (4).

In [98], Jensen and Nenciu recently considered how an eigenvalue E at a (non-
degenerate) threshold of Hy becomes a resonance of Hy+xW, in the Howland—Orth
sense, when the first-order correction to E is positive. Jensen and Nenciu carry
out an asymptotic analysis of the LivSsic—Feshbach matrix, and with the aid of an
expansion of the resolvent at zero energy, they derive a modified Fermi Golden Rule
for the width I', proportional to £™/2 with m odd.

In another recent article [30], Cattaneo, Graf, and Hunziker synthesize the
current state of quantum resonance theory under rather basic assumptions, wviz.:
That Mourre’s inequality (16) holds for H(x) and an auxiliary operator A; that the
multiple commutators of A with H(x) and W exist up to some finite order N; and
that D(H) is mapped by exp(isA) into itself. Their main theorem is that if N is
sufficiently large, and if I > 0, then for some smoothed spectral projector g onto
an interval A containing Ao,

(¢ exp(—iH (k)t)g(H(x))¢) = e~ V(1 + O(x?)) + b(k, 1), (18)

where b is an error term vanishing suitably as k — 0 and decaying polynomially in
time. Boundary values of the resolvent are also shown to be regular in A.

Concurrently with the evolution of resonance theory as described above, with
the focus on perturbations and the exponential-decay law (4), important mathemat-
ical work was done on resonances from some independent points of view. Although
Lax and Phillips stated in the introduction to their monograph [113] that their
subject was “classical—in contrast to quantum mechanical scattering theory,” a
section on the Schrédinger equation with compactly supported potential was in-
cluded. Observing the simple relationship between the Schrédinger S-matrix for
compactly supported potential energy and an “acoustic” scattering matrix for the
wave equation with a compact obstacle, Lax and Phillips showed in [113] that
the Schrodinger scattering matrix has a meromorphic continuation onto the non-
physical sheet, poles of which constitute resonances in their set-up. The counterpart
for the wave equation of semiclassical analysis for the time-dependent Schrodinger
equation is the propagation of wave fronts along rays. Correspondingly, the Lax—
Phillips approach to scattering has brought out connections between resonances
and rays that are trapped. An obstacle is said to be trapping if there exist rays
reflecting according to Snell’s law that are either closed or of arbitrary long dura-
tion. For problems with a potential, trapping requires trajectories of the classical
flow at some energy E, that do not tend to infinity in time, around which one can
construct quasi-modes [167, 178]. Physical intuition argues that if rays can be
trapped, then there will be quasi-stationary wave packets, whereas in the absence
of trapping, scattering should take place without delays, and consequently the poles
in the analytic continuation of the S-matrix ought to be relatively far from the real
axis.

With or without trapping, there are universal, non-asymptotic lower bounds
to shape-resonance widths, which show exponential dependence if parameters like
Planck’s constant are introduced. Such resonance-free regions were first found for
one-dimensional shape resonances by Harrell in [67], using ODE comparison theo-
rems and integral identities. A similar result was obtained in higher dimensions by
Fernandez and Lavine [48] for states satisfying a strict outgoing radiation condition.
Related semiclassical bounds were then studied by Helffer and Sjostrand [73], Briet
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et al. [25], and Burq [28], who allowed long-range potentials. Other restrictions
on the location of individual resonances have been obtained with various methods
in [69, 131, 117, 12, 1].

If the potential is assumed non-trapping, the expectation is that resonances
should be few and weak. Under non-trapping assumptions, Melrose, Zworski, and
others have delineated resonance-free regions and estimates of the numbers and
distribution of resonances [122, 193, 130, 194, 123, 83, 195, 121]. In contrast,
it can be proved that if the potential is trapping, or if quasi-modes are assumed,
then there are resonances exponentially close to the real axis; for results of this
sort, see [32, 26, 55, 166, 167, 177]. Theorems about the distribution of reso-
nances in many dimensions generally lack the detail of the results in one dimension
[122, 193, 194, 51, 52, 164], and often they distinguish between even and odd
dimensions, a familiar circumstance for the wave equation that is less compelling
for the Schrodinger equation. For example, Sjostrand and Zworski [168] proved a
distribution theorem for resonances only in odd dimensions, which was also valid
in even dimensions, although that was proved only much later [167].

Broadly viewed, the acoustic resonance theory of Lax and Phillips follows the
same strategy as quantum resonance theory, of reducing the subject to analytic
Fredholm theory for families of compact operator. Variants of this strategy have
been developed by a number of authors (e.g., [56, 139, 57, 140]), and most cur-
rently by Agmon [4], who regarded the resolvent (H — \)~! as an operator from H
to some larger space. Assuming that the resolvent can be continued as a meromor-
phic function of A, Agmon extracts in a canonical way an operator with discrete
spectrum corresponding to the poles of the resolvent.

A conceptually distinct approach to resonance theory takes quasi-stationary
time-evolution of the wave function as the starting point. A persistent advocate of
this point of view has been Lavine [110], who stressed the notion of the sojourn
time of a quantum state, closely related to the Eisenbud-Wigner time-delay [44,
188, 120, 93, 135, 132, 8]. Lavine prefigured Mourre by using commutators with
the generator A of dilatations, and in particular derived a formula for the sojourn
time in terms of B := i[H, A]. (See [111, 93, 8, 129, 183, 184] for further
developments connected with sojourn times and time-delays.)

The program laid out out by Simon in [160] has largely come to fruition, as
the questions laid out in that article about resonances are now answered not only
in special models but in wide generality. The mathematical methods developed
in the interim are suitable for making numerical calculations of resonance energies
and decay rates, and are in the process of joining Rayleigh—Schrodinger theory and
complex scaling in the arsenal of physicists for everyday calculation.

In the mature phase of the theory of quantum resonances, there will continue
to be challenging problems to analyze. For example: Can the restriction to odd
dimensions in articles such as [98] be relaxed? Can the asymptotics of resonances
in many dimensions be estimated with an exactness approaching that of the one-
dimensional case [122, 193, 194, 51, 52, 164]?7 The most interesting possibilities
on the horizon, however, may be a full merger of the different conceptual approaches
to resonances, whether under an abstract umbrella like Agmon’s theory [4], or one
beginning with a time-delay and proceeding from that to information about the
analysis of continued resolvents.
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