(*^
::[ Information =
"This is a Mathematica Notebook file. It contains ASCII text, and can be
transferred by email, ftp, or other text-file transfer utility. It should
be read or edited using a copy of Mathematica or MathReader. If you
received this as email, use your mail application or copy/paste to save
everything from the line containing (*^ down to the line containing ^*)
into a plain text file. On some systems you may have to give the file a
name ending with ".ma" to allow Mathematica to recognize it as a Notebook.
The line below identifies what version of Mathematica created this file,
but it can be opened using any other version as well.";
FrontEndVersion = "Macintosh Mathematica Notebook Front End Version 2.2";
MacintoshStandardFontEncoding;
fontset = title, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, bold, e8, 24, "Times";
fontset = subtitle, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, bold, e6, 18, "Times";
fontset = subsubtitle, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, italic, e6, 14, "Times";
fontset = section, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, grayBox, M22, bold, a20, 18, "Times";
fontset = subsection, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, blackBox, M19, bold, a15, 14, "Times";
fontset = subsubsection, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, whiteBox, M18, bold, a12, 12, "Times";
fontset = text, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
fontset = smalltext, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 10, "Times";
fontset = input, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeInput, M42, N23, bold, L-5, 12, "Courier";
fontset = output, output, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L-5, 12, "Courier";
fontset = message, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, R65535, L-5, 12, "Courier";
fontset = print, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L-5, 12, "Courier";
fontset = info, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, B65535, L-5, 12, "Courier";
fontset = postscript, PostScript, formatAsPostScript, output, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeGraphics, M7, l34, w282, h287, 12, "Courier";
fontset = name, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, italic, 10, "Geneva";
fontset = header, inactive, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
fontset = leftheader, inactive, L2, 12, "Times";
fontset = footer, inactive, noKeepOnOnePage, preserveAspect, center, M7, 12, "Times";
fontset = leftfooter, inactive, L2, 12, "Times";
fontset = help, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 10, "Times";
fontset = clipboard, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
fontset = completions, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
fontset = special1, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
fontset = special2, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
fontset = special3, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
fontset = special4, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
fontset = special5, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times";
paletteColors = 128; automaticGrouping; currentKernel;
]
:[font = title; inactive; preserveAspect; startGroup]
Orthogonal series and boundary value problems
Linear equations and operators
:[font = subtitle; inactive; preserveAspect]
An example of an integral equation
;[s]
1:0,1;35,-1;
2:0,19,14,Times,1,18,0,0,0;1,25,18,Times,1,24,0,0,0;
:[font = input; preserveAspect]
(c) Copyright 1994,1995 by Evans M. Harrell, II. All rights reserved
;[s]
1:0,1;70,-1;
2:0,12,10,Courier,1,12,0,0,0;1,12,9,Times,1,12,0,0,0;
:[font = text; inactive; preserveAspect; fontSize = 18]
To execute this Mathematica notebook, you need to put the cursor in the calculation cells in order and push return. You may find it instructive to modify the inputs and see what results.
;[s]
3:0,0;16,1;27,0;189,-1;
2:2,19,14,Times,0,18,0,0,0;1,19,14,Times,2,18,0,0,0;
:[font = text; inactive; preserveAspect]
Let's consider the integral equation
y(x) = K y + f(x)
where K g denotes the integral from 0 to x of Sin[Pi(x-t)] g(t) dt, we take f(x) = x, and the variable x runs from 0 to 1.
This kernel is not separable, even though a trigonometric identity can be used to write Sin[Pi(x-t)] as a sum in the form ap(x) bp(t), because the limits of the integral depend on x. (The equation is said to be of Volterra type.)
We first ask whether this integral kernel is small in the two senses we have learned about. This means checking whether either of two calculations is less than 1. Notice that since the integral runs only from 0 to x, the integral kernel is
K(x,t) = Sin[Pi(x-t)] , 0 < t < x < 1
K(x,t) = 0 , 0 < x < t < 1
The integrals we shall calculate will thus only run from 0 to x in the variable t.
To see if the kernel is small in the sense appropriate for a continuous solution y(x), we calculate:
;[s]
9:0,0;317,2;318,0;323,2;324,0;409,1;417,0;901,1;912,0;942,-1;
3:5,13,9,Times,0,12,0,0,0;2,13,9,Times,2,12,0,0,0;2,21,13,Times,64,12,0,0,0;
:[font = input; preserveAspect]
Integrate[Sin[Pi(x-t)], {t,0,x}]
:[font = text; inactive; preserveAspect]
This is maximized by 2/¹, which is less than 1:
:[font = input; preserveAspect]
N[2/Pi]
:[font = text; inactive; preserveAspect]
We are thus guaranteed that the integral equation has a continuous solution, and that we can calculate it by iteration.
To see if the kernel is small in the sense appropriate for a square-integrable solution y(x), we calculate:
;[s]
3:0,0;182,1;200,0;230,-1;
2:2,13,9,Times,0,12,0,0,0;1,13,9,Times,2,12,0,0,0;
:[font = input; preserveAspect]
Integrate[Sin[Pi(x-t)]^2, {t,0,x}]
:[font = input; preserveAspect]
Integrate[%, {x,0,1}]
:[font = input; preserveAspect]
N[%]
:[font = text; inactive; preserveAspect]
This is also less than 1, so we are guaranteed that iteration will lead us to the solution in the r.m.s. sense. Normally this is a weaker statement than the previous one, so we are not surprised.
Now let's calculate the solution
:[font = input; preserveAspect]
Clear[K]
:[font = input; preserveAspect]
K[f_] := Integrate[Sin[Pi(x-t)] (f /. x -> t), {t,0,x}]
:[font = text; inactive; preserveAspect]
The obscure command embedded in this, (f /. x -> t), has the effect of changing the variable in the function f from x to t, which we need to do to integrate properly.
;[s]
4:0,0;38,1;51,2;53,0;167,-1;
3:2,13,9,Times,0,12,0,0,0;1,13,10,Courier,1,12,0,0,0;1,13,10,Courier,0,12,0,0,0;
:[font = input; preserveAspect; startGroup]
y1[x_] = K[x]
:[font = output; output; inactive; preserveAspect; endGroup]
x/Pi - Sin[Pi*x]/Pi^2
;[o]
x Sin[Pi x]
-- - ---------
Pi 2
Pi
:[font = input; preserveAspect; startGroup]
y2[x_] = K[y1[x]]
:[font = output; output; inactive; preserveAspect; endGroup]
(4*Pi*x + 2*Pi*x*Cos[Pi*x] - Sin[Pi*x])/(4*Pi^3) -
(5*Sin[Pi*x])/(4*Pi^3)
;[o]
4 Pi x + 2 Pi x Cos[Pi x] - Sin[Pi x] 5 Sin[Pi x]
------------------------------------- - -----------
3 3
4 Pi 4 Pi
:[font = input; preserveAspect; startGroup]
y3[x_] = K[y2[x]]
:[font = output; output; inactive; preserveAspect; endGroup]
(-23*Sin[Pi*x])/(16*Pi^4) +
(16*Pi*x + 14*Pi*x*Cos[Pi*x] - 7*Sin[Pi*x] +
2*Pi^2*x^2*Sin[Pi*x])/(16*Pi^4)
;[o]
-23 Sin[Pi x]
------------- + (16 Pi x + 14 Pi x Cos[Pi x] -
4
16 Pi
2 2 4
7 Sin[Pi x] + 2 Pi x Sin[Pi x]) / (16 Pi )
:[font = input; preserveAspect; startGroup]
{Plot[x, {x,0,1}], Plot[y1[x]+x, {x,0,1}], \
Plot[y2[x]+y1[x]+x, {x,0,1}], \
Plot[y3[x]+y2[x]+y1[x]+x, {x,0,1}]}
:[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 34; pictureWidth = 282; pictureHeight = 174; startGroup]
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.952381 0.0147151 0.588604 [
[(0.2)] .21429 .01472 0 2 Msboxa
[(0.4)] .40476 .01472 0 2 Msboxa
[(0.6)] .59524 .01472 0 2 Msboxa
[(0.8)] .78571 .01472 0 2 Msboxa
[(1)] .97619 .01472 0 2 Msboxa
[(0.2)] .01131 .13244 1 0 Msboxa
[(0.4)] .01131 .25016 1 0 Msboxa
[(0.6)] .01131 .36788 1 0 Msboxa
[(0.8)] .01131 .4856 1 0 Msboxa
[(1)] .01131 .60332 1 0 Msboxa
[ -0.001 -0.001 0 0 ]
[ 1.001 .61903 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
[ ] 0 setdash
0 g
p
p
.002 w
.21429 .01472 m
.21429 .02097 L
s
P
[(0.2)] .21429 .01472 0 2 Mshowa
p
.002 w
.40476 .01472 m
.40476 .02097 L
s
P
[(0.4)] .40476 .01472 0 2 Mshowa
p
.002 w
.59524 .01472 m
.59524 .02097 L
s
P
[(0.6)] .59524 .01472 0 2 Mshowa
p
.002 w
.78571 .01472 m
.78571 .02097 L
s
P
[(0.8)] .78571 .01472 0 2 Mshowa
p
.002 w
.97619 .01472 m
.97619 .02097 L
s
P
[(1)] .97619 .01472 0 2 Mshowa
p
.001 w
.0619 .01472 m
.0619 .01847 L
s
P
p
.001 w
.1 .01472 m
.1 .01847 L
s
P
p
.001 w
.1381 .01472 m
.1381 .01847 L
s
P
p
.001 w
.17619 .01472 m
.17619 .01847 L
s
P
p
.001 w
.25238 .01472 m
.25238 .01847 L
s
P
p
.001 w
.29048 .01472 m
.29048 .01847 L
s
P
p
.001 w
.32857 .01472 m
.32857 .01847 L
s
P
p
.001 w
.36667 .01472 m
.36667 .01847 L
s
P
p
.001 w
.44286 .01472 m
.44286 .01847 L
s
P
p
.001 w
.48095 .01472 m
.48095 .01847 L
s
P
p
.001 w
.51905 .01472 m
.51905 .01847 L
s
P
p
.001 w
.55714 .01472 m
.55714 .01847 L
s
P
p
.001 w
.63333 .01472 m
.63333 .01847 L
s
P
p
.001 w
.67143 .01472 m
.67143 .01847 L
s
P
p
.001 w
.70952 .01472 m
.70952 .01847 L
s
P
p
.001 w
.74762 .01472 m
.74762 .01847 L
s
P
p
.001 w
.82381 .01472 m
.82381 .01847 L
s
P
p
.001 w
.8619 .01472 m
.8619 .01847 L
s
P
p
.001 w
.9 .01472 m
.9 .01847 L
s
P
p
.001 w
.9381 .01472 m
.9381 .01847 L
s
P
p
.002 w
0 .01472 m
1 .01472 L
s
P
p
.002 w
.02381 .13244 m
.03006 .13244 L
s
P
[(0.2)] .01131 .13244 1 0 Mshowa
p
.002 w
.02381 .25016 m
.03006 .25016 L
s
P
[(0.4)] .01131 .25016 1 0 Mshowa
p
.002 w
.02381 .36788 m
.03006 .36788 L
s
P
[(0.6)] .01131 .36788 1 0 Mshowa
p
.002 w
.02381 .4856 m
.03006 .4856 L
s
P
[(0.8)] .01131 .4856 1 0 Mshowa
p
.002 w
.02381 .60332 m
.03006 .60332 L
s
P
[(1)] .01131 .60332 1 0 Mshowa
p
.001 w
.02381 .03826 m
.02756 .03826 L
s
P
p
.001 w
.02381 .0618 m
.02756 .0618 L
s
P
p
.001 w
.02381 .08535 m
.02756 .08535 L
s
P
p
.001 w
.02381 .10889 m
.02756 .10889 L
s
P
p
.001 w
.02381 .15598 m
.02756 .15598 L
s
P
p
.001 w
.02381 .17952 m
.02756 .17952 L
s
P
p
.001 w
.02381 .20307 m
.02756 .20307 L
s
P
p
.001 w
.02381 .22661 m
.02756 .22661 L
s
P
p
.001 w
.02381 .2737 m
.02756 .2737 L
s
P
p
.001 w
.02381 .29724 m
.02756 .29724 L
s
P
p
.001 w
.02381 .32079 m
.02756 .32079 L
s
P
p
.001 w
.02381 .34433 m
.02756 .34433 L
s
P
p
.001 w
.02381 .39142 m
.02756 .39142 L
s
P
p
.001 w
.02381 .41497 m
.02756 .41497 L
s
P
p
.001 w
.02381 .43851 m
.02756 .43851 L
s
P
p
.001 w
.02381 .46205 m
.02756 .46205 L
s
P
p
.001 w
.02381 .50914 m
.02756 .50914 L
s
P
p
.001 w
.02381 .53269 m
.02756 .53269 L
s
P
p
.001 w
.02381 .55623 m
.02756 .55623 L
s
P
p
.001 w
.02381 .57977 m
.02756 .57977 L
s
P
p
.002 w
.02381 0 m
.02381 .61803 L
s
P
P
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
p
p
.004 w
.02381 .01472 m
.06349 .03924 L
.10317 .06377 L
.14286 .08829 L
.18254 .11282 L
.22222 .13734 L
.2619 .16187 L
.30159 .18639 L
.34127 .21092 L
.38095 .23544 L
.42063 .25997 L
.46032 .28449 L
.5 .30902 L
.53968 .33354 L
.57937 .35807 L
.61905 .38259 L
.65873 .40712 L
.69841 .43164 L
.7381 .45617 L
.77778 .48069 L
.81746 .50522 L
.85714 .52974 L
.89683 .55427 L
.93651 .57879 L
.97619 .60332 L
s
P
P
% End of Graphics
MathPictureEnd
:[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 34; pictureWidth = 282; pictureHeight = 174]
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.952381 0.0147151 0.446484 [
[(0.2)] .21429 .01472 0 2 Msboxa
[(0.4)] .40476 .01472 0 2 Msboxa
[(0.6)] .59524 .01472 0 2 Msboxa
[(0.8)] .78571 .01472 0 2 Msboxa
[(1)] .97619 .01472 0 2 Msboxa
[(0.2)] .01131 .10401 1 0 Msboxa
[(0.4)] .01131 .19331 1 0 Msboxa
[(0.6)] .01131 .28261 1 0 Msboxa
[(0.8)] .01131 .3719 1 0 Msboxa
[(1)] .01131 .4612 1 0 Msboxa
[(1.2)] .01131 .5505 1 0 Msboxa
[ -0.001 -0.001 0 0 ]
[ 1.001 .61903 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
[ ] 0 setdash
0 g
p
p
.002 w
.21429 .01472 m
.21429 .02097 L
s
P
[(0.2)] .21429 .01472 0 2 Mshowa
p
.002 w
.40476 .01472 m
.40476 .02097 L
s
P
[(0.4)] .40476 .01472 0 2 Mshowa
p
.002 w
.59524 .01472 m
.59524 .02097 L
s
P
[(0.6)] .59524 .01472 0 2 Mshowa
p
.002 w
.78571 .01472 m
.78571 .02097 L
s
P
[(0.8)] .78571 .01472 0 2 Mshowa
p
.002 w
.97619 .01472 m
.97619 .02097 L
s
P
[(1)] .97619 .01472 0 2 Mshowa
p
.001 w
.0619 .01472 m
.0619 .01847 L
s
P
p
.001 w
.1 .01472 m
.1 .01847 L
s
P
p
.001 w
.1381 .01472 m
.1381 .01847 L
s
P
p
.001 w
.17619 .01472 m
.17619 .01847 L
s
P
p
.001 w
.25238 .01472 m
.25238 .01847 L
s
P
p
.001 w
.29048 .01472 m
.29048 .01847 L
s
P
p
.001 w
.32857 .01472 m
.32857 .01847 L
s
P
p
.001 w
.36667 .01472 m
.36667 .01847 L
s
P
p
.001 w
.44286 .01472 m
.44286 .01847 L
s
P
p
.001 w
.48095 .01472 m
.48095 .01847 L
s
P
p
.001 w
.51905 .01472 m
.51905 .01847 L
s
P
p
.001 w
.55714 .01472 m
.55714 .01847 L
s
P
p
.001 w
.63333 .01472 m
.63333 .01847 L
s
P
p
.001 w
.67143 .01472 m
.67143 .01847 L
s
P
p
.001 w
.70952 .01472 m
.70952 .01847 L
s
P
p
.001 w
.74762 .01472 m
.74762 .01847 L
s
P
p
.001 w
.82381 .01472 m
.82381 .01847 L
s
P
p
.001 w
.8619 .01472 m
.8619 .01847 L
s
P
p
.001 w
.9 .01472 m
.9 .01847 L
s
P
p
.001 w
.9381 .01472 m
.9381 .01847 L
s
P
p
.002 w
0 .01472 m
1 .01472 L
s
P
p
.002 w
.02381 .10401 m
.03006 .10401 L
s
P
[(0.2)] .01131 .10401 1 0 Mshowa
p
.002 w
.02381 .19331 m
.03006 .19331 L
s
P
[(0.4)] .01131 .19331 1 0 Mshowa
p
.002 w
.02381 .28261 m
.03006 .28261 L
s
P
[(0.6)] .01131 .28261 1 0 Mshowa
p
.002 w
.02381 .3719 m
.03006 .3719 L
s
P
[(0.8)] .01131 .3719 1 0 Mshowa
p
.002 w
.02381 .4612 m
.03006 .4612 L
s
P
[(1)] .01131 .4612 1 0 Mshowa
p
.002 w
.02381 .5505 m
.03006 .5505 L
s
P
[(1.2)] .01131 .5505 1 0 Mshowa
p
.001 w
.02381 .03257 m
.02756 .03257 L
s
P
p
.001 w
.02381 .05043 m
.02756 .05043 L
s
P
p
.001 w
.02381 .06829 m
.02756 .06829 L
s
P
p
.001 w
.02381 .08615 m
.02756 .08615 L
s
P
p
.001 w
.02381 .12187 m
.02756 .12187 L
s
P
p
.001 w
.02381 .13973 m
.02756 .13973 L
s
P
p
.001 w
.02381 .15759 m
.02756 .15759 L
s
P
p
.001 w
.02381 .17545 m
.02756 .17545 L
s
P
p
.001 w
.02381 .21117 m
.02756 .21117 L
s
P
p
.001 w
.02381 .22903 m
.02756 .22903 L
s
P
p
.001 w
.02381 .24689 m
.02756 .24689 L
s
P
p
.001 w
.02381 .26475 m
.02756 .26475 L
s
P
p
.001 w
.02381 .30046 m
.02756 .30046 L
s
P
p
.001 w
.02381 .31832 m
.02756 .31832 L
s
P
p
.001 w
.02381 .33618 m
.02756 .33618 L
s
P
p
.001 w
.02381 .35404 m
.02756 .35404 L
s
P
p
.001 w
.02381 .38976 m
.02756 .38976 L
s
P
p
.001 w
.02381 .40762 m
.02756 .40762 L
s
P
p
.001 w
.02381 .42548 m
.02756 .42548 L
s
P
p
.001 w
.02381 .44334 m
.02756 .44334 L
s
P
p
.001 w
.02381 .47906 m
.02756 .47906 L
s
P
p
.001 w
.02381 .49692 m
.02756 .49692 L
s
P
p
.001 w
.02381 .51478 m
.02756 .51478 L
s
P
p
.001 w
.02381 .53264 m
.02756 .53264 L
s
P
p
.001 w
.02381 .56835 m
.02756 .56835 L
s
P
p
.001 w
.02381 .58621 m
.02756 .58621 L
s
P
p
.001 w
.02381 .60407 m
.02756 .60407 L
s
P
p
.002 w
.02381 0 m
.02381 .61803 L
s
P
P
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
p
p
.004 w
.02381 .01472 m
.06349 .03334 L
.10317 .05206 L
.14286 .07098 L
.18254 .0902 L
.22222 .1098 L
.2619 .12988 L
.30159 .1505 L
.34127 .17174 L
.38095 .19365 L
.42063 .21627 L
.46032 .23964 L
.5 .26378 L
.53968 .28869 L
.57937 .31437 L
.61905 .3408 L
.65873 .36794 L
.69841 .39575 L
.7381 .42418 L
.77778 .45315 L
.81746 .4826 L
.85714 .51243 L
.89683 .54256 L
.93651 .57289 L
.97619 .60332 L
s
P
P
% End of Graphics
MathPictureEnd
:[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 34; pictureWidth = 282; pictureHeight = 174]
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.952381 0.0147151 0.429961 [
[(0.2)] .21429 .01472 0 2 Msboxa
[(0.4)] .40476 .01472 0 2 Msboxa
[(0.6)] .59524 .01472 0 2 Msboxa
[(0.8)] .78571 .01472 0 2 Msboxa
[(1)] .97619 .01472 0 2 Msboxa
[(0.2)] .01131 .10071 1 0 Msboxa
[(0.4)] .01131 .1867 1 0 Msboxa
[(0.6)] .01131 .27269 1 0 Msboxa
[(0.8)] .01131 .35868 1 0 Msboxa
[(1)] .01131 .44468 1 0 Msboxa
[(1.2)] .01131 .53067 1 0 Msboxa
[(1.4)] .01131 .61666 1 0 Msboxa
[ -0.001 -0.001 0 0 ]
[ 1.001 .61903 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
[ ] 0 setdash
0 g
p
p
.002 w
.21429 .01472 m
.21429 .02097 L
s
P
[(0.2)] .21429 .01472 0 2 Mshowa
p
.002 w
.40476 .01472 m
.40476 .02097 L
s
P
[(0.4)] .40476 .01472 0 2 Mshowa
p
.002 w
.59524 .01472 m
.59524 .02097 L
s
P
[(0.6)] .59524 .01472 0 2 Mshowa
p
.002 w
.78571 .01472 m
.78571 .02097 L
s
P
[(0.8)] .78571 .01472 0 2 Mshowa
p
.002 w
.97619 .01472 m
.97619 .02097 L
s
P
[(1)] .97619 .01472 0 2 Mshowa
p
.001 w
.0619 .01472 m
.0619 .01847 L
s
P
p
.001 w
.1 .01472 m
.1 .01847 L
s
P
p
.001 w
.1381 .01472 m
.1381 .01847 L
s
P
p
.001 w
.17619 .01472 m
.17619 .01847 L
s
P
p
.001 w
.25238 .01472 m
.25238 .01847 L
s
P
p
.001 w
.29048 .01472 m
.29048 .01847 L
s
P
p
.001 w
.32857 .01472 m
.32857 .01847 L
s
P
p
.001 w
.36667 .01472 m
.36667 .01847 L
s
P
p
.001 w
.44286 .01472 m
.44286 .01847 L
s
P
p
.001 w
.48095 .01472 m
.48095 .01847 L
s
P
p
.001 w
.51905 .01472 m
.51905 .01847 L
s
P
p
.001 w
.55714 .01472 m
.55714 .01847 L
s
P
p
.001 w
.63333 .01472 m
.63333 .01847 L
s
P
p
.001 w
.67143 .01472 m
.67143 .01847 L
s
P
p
.001 w
.70952 .01472 m
.70952 .01847 L
s
P
p
.001 w
.74762 .01472 m
.74762 .01847 L
s
P
p
.001 w
.82381 .01472 m
.82381 .01847 L
s
P
p
.001 w
.8619 .01472 m
.8619 .01847 L
s
P
p
.001 w
.9 .01472 m
.9 .01847 L
s
P
p
.001 w
.9381 .01472 m
.9381 .01847 L
s
P
p
.002 w
0 .01472 m
1 .01472 L
s
P
p
.002 w
.02381 .10071 m
.03006 .10071 L
s
P
[(0.2)] .01131 .10071 1 0 Mshowa
p
.002 w
.02381 .1867 m
.03006 .1867 L
s
P
[(0.4)] .01131 .1867 1 0 Mshowa
p
.002 w
.02381 .27269 m
.03006 .27269 L
s
P
[(0.6)] .01131 .27269 1 0 Mshowa
p
.002 w
.02381 .35868 m
.03006 .35868 L
s
P
[(0.8)] .01131 .35868 1 0 Mshowa
p
.002 w
.02381 .44468 m
.03006 .44468 L
s
P
[(1)] .01131 .44468 1 0 Mshowa
p
.002 w
.02381 .53067 m
.03006 .53067 L
s
P
[(1.2)] .01131 .53067 1 0 Mshowa
p
.002 w
.02381 .61666 m
.03006 .61666 L
s
P
[(1.4)] .01131 .61666 1 0 Mshowa
p
.001 w
.02381 .03191 m
.02756 .03191 L
s
P
p
.001 w
.02381 .04911 m
.02756 .04911 L
s
P
p
.001 w
.02381 .06631 m
.02756 .06631 L
s
P
p
.001 w
.02381 .08351 m
.02756 .08351 L
s
P
p
.001 w
.02381 .11791 m
.02756 .11791 L
s
P
p
.001 w
.02381 .1351 m
.02756 .1351 L
s
P
p
.001 w
.02381 .1523 m
.02756 .1523 L
s
P
p
.001 w
.02381 .1695 m
.02756 .1695 L
s
P
p
.001 w
.02381 .2039 m
.02756 .2039 L
s
P
p
.001 w
.02381 .2211 m
.02756 .2211 L
s
P
p
.001 w
.02381 .23829 m
.02756 .23829 L
s
P
p
.001 w
.02381 .25549 m
.02756 .25549 L
s
P
p
.001 w
.02381 .28989 m
.02756 .28989 L
s
P
p
.001 w
.02381 .30709 m
.02756 .30709 L
s
P
p
.001 w
.02381 .32429 m
.02756 .32429 L
s
P
p
.001 w
.02381 .34149 m
.02756 .34149 L
s
P
p
.001 w
.02381 .37588 m
.02756 .37588 L
s
P
p
.001 w
.02381 .39308 m
.02756 .39308 L
s
P
p
.001 w
.02381 .41028 m
.02756 .41028 L
s
P
p
.001 w
.02381 .42748 m
.02756 .42748 L
s
P
p
.001 w
.02381 .46187 m
.02756 .46187 L
s
P
p
.001 w
.02381 .47907 m
.02756 .47907 L
s
P
p
.001 w
.02381 .49627 m
.02756 .49627 L
s
P
p
.001 w
.02381 .51347 m
.02756 .51347 L
s
P
p
.001 w
.02381 .54787 m
.02756 .54787 L
s
P
p
.001 w
.02381 .56507 m
.02756 .56507 L
s
P
p
.001 w
.02381 .58226 m
.02756 .58226 L
s
P
p
.001 w
.02381 .59946 m
.02756 .59946 L
s
P
p
.002 w
.02381 0 m
.02381 .61803 L
s
P
P
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
p
p
.004 w
.02381 .01472 m
.06349 .03265 L
.10317 .05068 L
.14286 .0689 L
.18254 .08741 L
.22222 .1063 L
.2619 .12565 L
.30159 .14555 L
.34127 .16607 L
.38095 .18727 L
.42063 .20922 L
.46032 .23196 L
.5 .25554 L
.53968 .27999 L
.57937 .30531 L
.61905 .33153 L
.65873 .35864 L
.69841 .38662 L
.7381 .41544 L
.77778 .44507 L
.81746 .47547 L
.85714 .50656 L
.89683 .53829 L
.93651 .57057 L
.97619 .60332 L
s
P
P
% End of Graphics
MathPictureEnd
:[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 34; pictureWidth = 282; pictureHeight = 174; endGroup]
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.952381 0.0147151 0.428698 [
[(0.2)] .21429 .01472 0 2 Msboxa
[(0.4)] .40476 .01472 0 2 Msboxa
[(0.6)] .59524 .01472 0 2 Msboxa
[(0.8)] .78571 .01472 0 2 Msboxa
[(1)] .97619 .01472 0 2 Msboxa
[(0.2)] .01131 .10045 1 0 Msboxa
[(0.4)] .01131 .18619 1 0 Msboxa
[(0.6)] .01131 .27193 1 0 Msboxa
[(0.8)] .01131 .35767 1 0 Msboxa
[(1)] .01131 .44341 1 0 Msboxa
[(1.2)] .01131 .52915 1 0 Msboxa
[(1.4)] .01131 .61489 1 0 Msboxa
[ -0.001 -0.001 0 0 ]
[ 1.001 .61903 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
[ ] 0 setdash
0 g
p
p
.002 w
.21429 .01472 m
.21429 .02097 L
s
P
[(0.2)] .21429 .01472 0 2 Mshowa
p
.002 w
.40476 .01472 m
.40476 .02097 L
s
P
[(0.4)] .40476 .01472 0 2 Mshowa
p
.002 w
.59524 .01472 m
.59524 .02097 L
s
P
[(0.6)] .59524 .01472 0 2 Mshowa
p
.002 w
.78571 .01472 m
.78571 .02097 L
s
P
[(0.8)] .78571 .01472 0 2 Mshowa
p
.002 w
.97619 .01472 m
.97619 .02097 L
s
P
[(1)] .97619 .01472 0 2 Mshowa
p
.001 w
.0619 .01472 m
.0619 .01847 L
s
P
p
.001 w
.1 .01472 m
.1 .01847 L
s
P
p
.001 w
.1381 .01472 m
.1381 .01847 L
s
P
p
.001 w
.17619 .01472 m
.17619 .01847 L
s
P
p
.001 w
.25238 .01472 m
.25238 .01847 L
s
P
p
.001 w
.29048 .01472 m
.29048 .01847 L
s
P
p
.001 w
.32857 .01472 m
.32857 .01847 L
s
P
p
.001 w
.36667 .01472 m
.36667 .01847 L
s
P
p
.001 w
.44286 .01472 m
.44286 .01847 L
s
P
p
.001 w
.48095 .01472 m
.48095 .01847 L
s
P
p
.001 w
.51905 .01472 m
.51905 .01847 L
s
P
p
.001 w
.55714 .01472 m
.55714 .01847 L
s
P
p
.001 w
.63333 .01472 m
.63333 .01847 L
s
P
p
.001 w
.67143 .01472 m
.67143 .01847 L
s
P
p
.001 w
.70952 .01472 m
.70952 .01847 L
s
P
p
.001 w
.74762 .01472 m
.74762 .01847 L
s
P
p
.001 w
.82381 .01472 m
.82381 .01847 L
s
P
p
.001 w
.8619 .01472 m
.8619 .01847 L
s
P
p
.001 w
.9 .01472 m
.9 .01847 L
s
P
p
.001 w
.9381 .01472 m
.9381 .01847 L
s
P
p
.002 w
0 .01472 m
1 .01472 L
s
P
p
.002 w
.02381 .10045 m
.03006 .10045 L
s
P
[(0.2)] .01131 .10045 1 0 Mshowa
p
.002 w
.02381 .18619 m
.03006 .18619 L
s
P
[(0.4)] .01131 .18619 1 0 Mshowa
p
.002 w
.02381 .27193 m
.03006 .27193 L
s
P
[(0.6)] .01131 .27193 1 0 Mshowa
p
.002 w
.02381 .35767 m
.03006 .35767 L
s
P
[(0.8)] .01131 .35767 1 0 Mshowa
p
.002 w
.02381 .44341 m
.03006 .44341 L
s
P
[(1)] .01131 .44341 1 0 Mshowa
p
.002 w
.02381 .52915 m
.03006 .52915 L
s
P
[(1.2)] .01131 .52915 1 0 Mshowa
p
.002 w
.02381 .61489 m
.03006 .61489 L
s
P
[(1.4)] .01131 .61489 1 0 Mshowa
p
.001 w
.02381 .03186 m
.02756 .03186 L
s
P
p
.001 w
.02381 .04901 m
.02756 .04901 L
s
P
p
.001 w
.02381 .06616 m
.02756 .06616 L
s
P
p
.001 w
.02381 .08331 m
.02756 .08331 L
s
P
p
.001 w
.02381 .1176 m
.02756 .1176 L
s
P
p
.001 w
.02381 .13475 m
.02756 .13475 L
s
P
p
.001 w
.02381 .1519 m
.02756 .1519 L
s
P
p
.001 w
.02381 .16905 m
.02756 .16905 L
s
P
p
.001 w
.02381 .20334 m
.02756 .20334 L
s
P
p
.001 w
.02381 .22049 m
.02756 .22049 L
s
P
p
.001 w
.02381 .23764 m
.02756 .23764 L
s
P
p
.001 w
.02381 .25479 m
.02756 .25479 L
s
P
p
.001 w
.02381 .28908 m
.02756 .28908 L
s
P
p
.001 w
.02381 .30623 m
.02756 .30623 L
s
P
p
.001 w
.02381 .32338 m
.02756 .32338 L
s
P
p
.001 w
.02381 .34053 m
.02756 .34053 L
s
P
p
.001 w
.02381 .37482 m
.02756 .37482 L
s
P
p
.001 w
.02381 .39197 m
.02756 .39197 L
s
P
p
.001 w
.02381 .40912 m
.02756 .40912 L
s
P
p
.001 w
.02381 .42627 m
.02756 .42627 L
s
P
p
.001 w
.02381 .46056 m
.02756 .46056 L
s
P
p
.001 w
.02381 .47771 m
.02756 .47771 L
s
P
p
.001 w
.02381 .49486 m
.02756 .49486 L
s
P
p
.001 w
.02381 .51201 m
.02756 .51201 L
s
P
p
.001 w
.02381 .5463 m
.02756 .5463 L
s
P
p
.001 w
.02381 .56345 m
.02756 .56345 L
s
P
p
.001 w
.02381 .5806 m
.02756 .5806 L
s
P
p
.001 w
.02381 .59774 m
.02756 .59774 L
s
P
p
.002 w
.02381 0 m
.02381 .61803 L
s
P
P
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
p
p
.004 w
.02381 .01472 m
.06349 .03259 L
.10317 .05057 L
.14286 .06874 L
.18254 .08719 L
.22222 .10603 L
.2619 .12532 L
.30159 .14516 L
.34127 .16562 L
.38095 .18677 L
.42063 .20865 L
.46032 .23134 L
.5 .25485 L
.53968 .27924 L
.57937 .30451 L
.61905 .33068 L
.65873 .35776 L
.69841 .38571 L
.7381 .41454 L
.77778 .44421 L
.81746 .47467 L
.85714 .50587 L
.89683 .53776 L
.93651 .57027 L
.97619 .60332 L
s
P
P
% End of Graphics
MathPictureEnd
:[font = output; output; inactive; preserveAspect; endGroup]
{Graphics["<<>>"], Graphics["<<>>"], Graphics["<<>>"],
Graphics["<<>>"]}
;[o]
{-Graphics-, -Graphics-, -Graphics-, -Graphics-}
:[font = text; inactive; preserveAspect]
These last two plots look somewhat similar, which is an indication that we are getting close to the exact solution. How far away are we? Well, if you stop the series at third order,
f + Kf + K2 f + K3 f,
then the error is K4 f + K5 f +...
We know that the calculations we must check for convergence are actually bounds
of the form ||K g|| <= c || g||,
where for the infinity norm (for continuous functions), c = 2/¹, and for the r.m.s. norm (for square-integrable functions) c = 1/2. (The calculation we did gave 1/4, but that is actually c2).
The right scale for this problem is ||x||infinity = 1 or, respectively, ||x||2 = 1/Sqrt[3]
;[s]
15:0,0;203,1;204,0;210,1;211,0;236,1;237,0;243,1;244,0;557,1;558,0;605,2;613,0;643,2;644,0;657,-1;
3:8,13,9,Times,0,12,0,0,0;5,21,13,Times,32,12,0,0,0;2,21,13,Times,64,12,0,0,0;
:[font = input; preserveAspect]
N[1/Sqrt[3]]
:[font = text; inactive; preserveAspect]
The norm of Kn f is at most Kn times the norm of f (either norm), so the size of the error is
c4 + c5 + ... = c4 (1 + c + c2 + ...) = c4/(1-c).
Conclusion: The maximum possible error
|x+y1+y2+y3 - yexact(x)|
is at most
;[s]
17:0,0;13,1;14,0;30,1;31,0;97,1;98,0;102,1;103,0;113,1;114,0;125,1;126,0;137,1;138,0;219,2;224,0;241,-1;
3:9,13,9,Times,0,12,0,0,0;7,21,13,Times,32,12,0,0,0;1,21,13,Times,64,12,0,0,0;
:[font = input; preserveAspect]
N[(2/Pi)^4 /(1-2/Pi)]
:[font = text; inactive; preserveAspect]
The maximum possible error in the rms sense is
:[font = input; preserveAspect]
(1/2)^4 / (1-1/2)
:[font = text; inactive; preserveAspect]
Which is fairly small. If we want more accuracy, we need more terms. With 8 terms,
:[font = input; preserveAspect]
N[(2/Pi)^8 /(1-2/Pi)]
:[font = input; preserveAspect]
N[(1/2)^7]
:[font = text; inactive; preserveAspect]
So we would be within 5% uniformly and about 1% in the rms sense. Actually, we are probably doingmuch better, for already at third order,
:[font = input; preserveAspect; startGroup]
Plot[y3[x], {x,0,1/2}]
Plot[y3[x], {x,1/2,1}]
:[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 34; pictureWidth = 282; pictureHeight = 174]
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 1.90476 0.0147151 1.17814e+06 [
[(0.1)] .21429 .01472 0 2 Msboxa
[(0.2)] .40476 .01472 0 2 Msboxa
[(0.3)] .59524 .01472 0 2 Msboxa
[(0.4)] .78571 .01472 0 2 Msboxa
[(0.5)] .97619 .01472 0 2 Msboxa
[( -7)(1. 10)] .01131 .13253 1 0 Msboxa
[( -7)(2. 10)] .01131 .25034 1 0 Msboxa
[( -7)(3. 10)] .01131 .36816 1 0 Msboxa
[( -7)(4. 10)] .01131 .48597 1 0 Msboxa
[( -7)(5. 10)] .01131 .60378 1 0 Msboxa
[ -0.001 -0.001 0 0 ]
[ 1.001 .61903 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
[ ] 0 setdash
0 g
p
p
.002 w
.21429 .01472 m
.21429 .02097 L
s
P
[(0.1)] .21429 .01472 0 2 Mshowa
p
.002 w
.40476 .01472 m
.40476 .02097 L
s
P
[(0.2)] .40476 .01472 0 2 Mshowa
p
.002 w
.59524 .01472 m
.59524 .02097 L
s
P
[(0.3)] .59524 .01472 0 2 Mshowa
p
.002 w
.78571 .01472 m
.78571 .02097 L
s
P
[(0.4)] .78571 .01472 0 2 Mshowa
p
.002 w
.97619 .01472 m
.97619 .02097 L
s
P
[(0.5)] .97619 .01472 0 2 Mshowa
p
.001 w
.0619 .01472 m
.0619 .01847 L
s
P
p
.001 w
.1 .01472 m
.1 .01847 L
s
P
p
.001 w
.1381 .01472 m
.1381 .01847 L
s
P
p
.001 w
.17619 .01472 m
.17619 .01847 L
s
P
p
.001 w
.25238 .01472 m
.25238 .01847 L
s
P
p
.001 w
.29048 .01472 m
.29048 .01847 L
s
P
p
.001 w
.32857 .01472 m
.32857 .01847 L
s
P
p
.001 w
.36667 .01472 m
.36667 .01847 L
s
P
p
.001 w
.44286 .01472 m
.44286 .01847 L
s
P
p
.001 w
.48095 .01472 m
.48095 .01847 L
s
P
p
.001 w
.51905 .01472 m
.51905 .01847 L
s
P
p
.001 w
.55714 .01472 m
.55714 .01847 L
s
P
p
.001 w
.63333 .01472 m
.63333 .01847 L
s
P
p
.001 w
.67143 .01472 m
.67143 .01847 L
s
P
p
.001 w
.70952 .01472 m
.70952 .01847 L
s
P
p
.001 w
.74762 .01472 m
.74762 .01847 L
s
P
p
.001 w
.82381 .01472 m
.82381 .01847 L
s
P
p
.001 w
.8619 .01472 m
.8619 .01847 L
s
P
p
.001 w
.9 .01472 m
.9 .01847 L
s
P
p
.001 w
.9381 .01472 m
.9381 .01847 L
s
P
p
.002 w
0 .01472 m
1 .01472 L
s
P
p
.002 w
.02381 .13253 m
.03006 .13253 L
s
P
[( -7)(1. 10)] .01131 .13253 1 0 Mshowa
p
.002 w
.02381 .25034 m
.03006 .25034 L
s
P
[( -7)(2. 10)] .01131 .25034 1 0 Mshowa
p
.002 w
.02381 .36816 m
.03006 .36816 L
s
P
[( -7)(3. 10)] .01131 .36816 1 0 Mshowa
p
.002 w
.02381 .48597 m
.03006 .48597 L
s
P
[( -7)(4. 10)] .01131 .48597 1 0 Mshowa
p
.002 w
.02381 .60378 m
.03006 .60378 L
s
P
[( -7)(5. 10)] .01131 .60378 1 0 Mshowa
p
.001 w
.02381 .03828 m
.02756 .03828 L
s
P
p
.001 w
.02381 .06184 m
.02756 .06184 L
s
P
p
.001 w
.02381 .0854 m
.02756 .0854 L
s
P
p
.001 w
.02381 .10897 m
.02756 .10897 L
s
P
p
.001 w
.02381 .15609 m
.02756 .15609 L
s
P
p
.001 w
.02381 .17965 m
.02756 .17965 L
s
P
p
.001 w
.02381 .20322 m
.02756 .20322 L
s
P
p
.001 w
.02381 .22678 m
.02756 .22678 L
s
P
p
.001 w
.02381 .27391 m
.02756 .27391 L
s
P
p
.001 w
.02381 .29747 m
.02756 .29747 L
s
P
p
.001 w
.02381 .32103 m
.02756 .32103 L
s
P
p
.001 w
.02381 .34459 m
.02756 .34459 L
s
P
p
.001 w
.02381 .39172 m
.02756 .39172 L
s
P
p
.001 w
.02381 .41528 m
.02756 .41528 L
s
P
p
.001 w
.02381 .43884 m
.02756 .43884 L
s
P
p
.001 w
.02381 .46241 m
.02756 .46241 L
s
P
p
.001 w
.02381 .50953 m
.02756 .50953 L
s
P
p
.001 w
.02381 .5331 m
.02756 .5331 L
s
P
p
.001 w
.02381 .55666 m
.02756 .55666 L
s
P
p
.001 w
.02381 .58022 m
.02756 .58022 L
s
P
p
.002 w
.02381 0 m
.02381 .61803 L
s
P
P
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
p
p
.004 w
.02381 .01472 m
.02505 .01472 L
.02629 .01472 L
.02753 .01472 L
.02877 .01472 L
.03001 .01472 L
.03125 .01472 L
.03249 .01472 L
.03373 .01472 L
.03497 .01472 L
.03621 .01472 L
.03745 .01472 L
.03869 .01472 L
.03993 .01472 L
.04117 .01472 L
.04241 .01472 L
.04365 .01472 L
.04489 .01472 L
.04613 .01472 L
.04737 .01472 L
.04861 .01472 L
.04985 .01472 L
.05109 .01472 L
.05233 .01472 L
.05357 .01472 L
.05481 .01472 L
.05605 .01472 L
.05729 .01472 L
.05853 .01472 L
.06101 .01472 L
.06225 .01472 L
.06349 .01472 L
.06473 .01472 L
.06597 .01472 L
.06845 .01472 L
.07093 .01472 L
.07341 .01472 L
.07589 .01472 L
.07837 .01472 L
.08085 .01472 L
.08333 .01472 L
.08581 .01472 L
.08829 .01472 L
.09077 .01472 L
.09325 .01472 L
.09821 .01472 L
.10069 .01472 L
.10317 .01472 L
.10565 .01472 L
.10813 .01472 L
Mistroke
.1131 .01472 L
.11806 .01472 L
.12302 .01472 L
.12798 .01473 L
.13294 .01473 L
.1379 .01474 L
.14286 .01474 L
.14782 .01475 L
.15278 .01476 L
.15774 .01478 L
.1627 .01479 L
.17262 .01484 L
.17758 .01488 L
.18254 .01492 L
.1875 .01497 L
.19246 .01502 L
.20238 .01517 L
.2123 .01539 L
.22222 .01568 L
.23214 .01607 L
.24206 .01658 L
.25198 .01727 L
.2619 .01815 L
.27183 .01928 L
.28175 .02072 L
.29167 .02253 L
.30159 .02479 L
.31151 .02759 L
.32143 .03103 L
.33135 .03523 L
.34127 .04031 L
.36111 .05379 L
.38095 .07292 L
.40079 .09955 L
.42063 .13599 L
.44048 .18505 L
.46032 .25016 L
.48016 .33545 L
.5 .44585 L
.51984 .5872 L
Mfstroke
.52326 .61803 m
.51984 .5872 L
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
P
P
% End of Graphics
MathPictureEnd
:[font = output; output; inactive; preserveAspect]
Graphics["<<>>"]
;[o]
-Graphics-
:[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 34; pictureWidth = 282; pictureHeight = 174]
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.928571 1.90476 0.0147151 146.003 [
[(0.5)] .02381 .01472 0 2 Msboxa
[(0.6)] .21429 .01472 0 2 Msboxa
[(0.7)] .40476 .01472 0 2 Msboxa
[(0.8)] .59524 .01472 0 2 Msboxa
[(0.9)] .78571 .01472 0 2 Msboxa
[(0.001)] .96369 .16072 1 0 Msboxa
[(0.002)] .96369 .30672 1 0 Msboxa
[(0.003)] .96369 .45272 1 0 Msboxa
[(0.004)] .96369 .59873 1 0 Msboxa
[ -0.001 -0.001 0 0 ]
[ 1.001 .61903 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
[ ] 0 setdash
0 g
p
p
.002 w
.02381 .01472 m
.02381 .02097 L
s
P
[(0.5)] .02381 .01472 0 2 Mshowa
p
.002 w
.21429 .01472 m
.21429 .02097 L
s
P
[(0.6)] .21429 .01472 0 2 Mshowa
p
.002 w
.40476 .01472 m
.40476 .02097 L
s
P
[(0.7)] .40476 .01472 0 2 Mshowa
p
.002 w
.59524 .01472 m
.59524 .02097 L
s
P
[(0.8)] .59524 .01472 0 2 Mshowa
p
.002 w
.78571 .01472 m
.78571 .02097 L
s
P
[(0.9)] .78571 .01472 0 2 Mshowa
p
.001 w
.0619 .01472 m
.0619 .01847 L
s
P
p
.001 w
.1 .01472 m
.1 .01847 L
s
P
p
.001 w
.1381 .01472 m
.1381 .01847 L
s
P
p
.001 w
.17619 .01472 m
.17619 .01847 L
s
P
p
.001 w
.25238 .01472 m
.25238 .01847 L
s
P
p
.001 w
.29048 .01472 m
.29048 .01847 L
s
P
p
.001 w
.32857 .01472 m
.32857 .01847 L
s
P
p
.001 w
.36667 .01472 m
.36667 .01847 L
s
P
p
.001 w
.44286 .01472 m
.44286 .01847 L
s
P
p
.001 w
.48095 .01472 m
.48095 .01847 L
s
P
p
.001 w
.51905 .01472 m
.51905 .01847 L
s
P
p
.001 w
.55714 .01472 m
.55714 .01847 L
s
P
p
.001 w
.63333 .01472 m
.63333 .01847 L
s
P
p
.001 w
.67143 .01472 m
.67143 .01847 L
s
P
p
.001 w
.70952 .01472 m
.70952 .01847 L
s
P
p
.001 w
.74762 .01472 m
.74762 .01847 L
s
P
p
.001 w
.82381 .01472 m
.82381 .01847 L
s
P
p
.001 w
.8619 .01472 m
.8619 .01847 L
s
P
p
.001 w
.9 .01472 m
.9 .01847 L
s
P
p
.001 w
.9381 .01472 m
.9381 .01847 L
s
P
p
.002 w
0 .01472 m
1 .01472 L
s
P
p
.002 w
.97619 .16072 m
.98244 .16072 L
s
P
[(0.001)] .96369 .16072 1 0 Mshowa
p
.002 w
.97619 .30672 m
.98244 .30672 L
s
P
[(0.002)] .96369 .30672 1 0 Mshowa
p
.002 w
.97619 .45272 m
.98244 .45272 L
s
P
[(0.003)] .96369 .45272 1 0 Mshowa
p
.002 w
.97619 .59873 m
.98244 .59873 L
s
P
[(0.004)] .96369 .59873 1 0 Mshowa
p
.001 w
.97619 .04392 m
.97994 .04392 L
s
P
p
.001 w
.97619 .07312 m
.97994 .07312 L
s
P
p
.001 w
.97619 .10232 m
.97994 .10232 L
s
P
p
.001 w
.97619 .13152 m
.97994 .13152 L
s
P
p
.001 w
.97619 .18992 m
.97994 .18992 L
s
P
p
.001 w
.97619 .21912 m
.97994 .21912 L
s
P
p
.001 w
.97619 .24832 m
.97994 .24832 L
s
P
p
.001 w
.97619 .27752 m
.97994 .27752 L
s
P
p
.001 w
.97619 .33592 m
.97994 .33592 L
s
P
p
.001 w
.97619 .36512 m
.97994 .36512 L
s
P
p
.001 w
.97619 .39432 m
.97994 .39432 L
s
P
p
.001 w
.97619 .42352 m
.97994 .42352 L
s
P
p
.001 w
.97619 .48193 m
.97994 .48193 L
s
P
p
.001 w
.97619 .51113 m
.97994 .51113 L
s
P
p
.001 w
.97619 .54033 m
.97994 .54033 L
s
P
p
.001 w
.97619 .56953 m
.97994 .56953 L
s
P
p
.002 w
.97619 0 m
.97619 .61803 L
s
P
P
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
p
p
.004 w
.02381 .02104 m
.06349 .02306 L
.10317 .0256 L
.14286 .02875 L
.18254 .03264 L
.22222 .0374 L
.2619 .04316 L
.30159 .05011 L
.34127 .05841 L
.38095 .06827 L
.42063 .07991 L
.46032 .09357 L
.5 .10952 L
.53968 .12803 L
.57937 .14941 L
.61905 .17398 L
.65873 .2021 L
.69841 .23414 L
.7381 .27048 L
.77778 .31153 L
.81746 .35774 L
.85714 .40954 L
.89683 .46741 L
.93651 .53184 L
.97619 .60332 L
s
P
P
% End of Graphics
MathPictureEnd
:[font = output; output; inactive; preserveAspect; endGroup]
Graphics["<<>>"]
;[o]
-Graphics-
:[font = input; preserveAspect; startGroup]
y4[x_] = K[y3[x]]
y5[x_] = K[y4[x]]
y6[x_] = K[y5[x]]
y7[x_] = K[y6[x]]
y8[x_] = K[y7[x]]
:[font = output; output; inactive; preserveAspect]
(-51*Sin[Pi*x])/(32*Pi^5) +
(96*Pi*x + 114*Pi*x*Cos[Pi*x] - 2*Pi^3*x^3*Cos[Pi*x] -
57*Sin[Pi*x] + 24*Pi^2*x^2*Sin[Pi*x])/(96*Pi^5)
;[o]
-51 Sin[Pi x]
------------- + (96 Pi x + 114 Pi x Cos[Pi x] -
5
32 Pi
3 3 2 2
2 Pi x Cos[Pi x] - 57 Sin[Pi x] + 24 Pi x Sin[Pi x]
5
) / (96 Pi )
:[font = output; output; inactive; preserveAspect]
(-443*Sin[Pi*x])/(256*Pi^6) +
(768*Pi*x + 1122*Pi*x*Cos[Pi*x] - 36*Pi^3*x^3*Cos[Pi*x] -
561*Sin[Pi*x] + 282*Pi^2*x^2*Sin[Pi*x] -
2*Pi^4*x^4*Sin[Pi*x])/(768*Pi^6)
;[o]
-443 Sin[Pi x]
-------------- + (768 Pi x + 1122 Pi x Cos[Pi x] -
6
256 Pi
3 3
36 Pi x Cos[Pi x] - 561 Sin[Pi x] +
2 2 4 4 6
282 Pi x Sin[Pi x] - 2 Pi x Sin[Pi x]) / (768 Pi )
:[font = output; output; inactive; preserveAspect]
(-949*Sin[Pi*x])/(512*Pi^7) +
(7680*Pi*x + 13110*Pi*x*Cos[Pi*x] -
570*Pi^3*x^3*Cos[Pi*x] + 2*Pi^5*x^5*Cos[Pi*x] -
6555*Sin[Pi*x] + 3660*Pi^2*x^2*Sin[Pi*x] -
50*Pi^4*x^4*Sin[Pi*x])/(7680*Pi^7)
;[o]
-949 Sin[Pi x]
-------------- + (7680 Pi x + 13110 Pi x Cos[Pi x] -
7
512 Pi
3 3 5 5
570 Pi x Cos[Pi x] + 2 Pi x Cos[Pi x] -
2 2
6555 Sin[Pi x] + 3660 Pi x Sin[Pi x] -
4 4 7
50 Pi x Sin[Pi x]) / (7680 Pi )
:[font = output; output; inactive; preserveAspect]
(-4027*Sin[Pi*x])/(2048*Pi^8) +
(92160*Pi*x + 178110*Pi*x*Cos[Pi*x] -
9360*Pi^3*x^3*Cos[Pi*x] + 66*Pi^5*x^5*Cos[Pi*x] -
89055*Sin[Pi*x] + 53370*Pi^2*x^2*Sin[Pi*x] -
1020*Pi^4*x^4*Sin[Pi*x] + 2*Pi^6*x^6*Sin[Pi*x])/
(92160*Pi^8)
;[o]
-4027 Sin[Pi x]
--------------- + (92160 Pi x + 178110 Pi x Cos[Pi x] -
8
2048 Pi
3 3 5 5
9360 Pi x Cos[Pi x] + 66 Pi x Cos[Pi x] -
2 2
89055 Sin[Pi x] + 53370 Pi x Sin[Pi x] -
4 4 6 6
1020 Pi x Sin[Pi x] + 2 Pi x Sin[Pi x]) /
8
(92160 Pi )
:[font = output; output; inactive; preserveAspect; endGroup]
(-8483*Sin[Pi*x])/(4096*Pi^9) +
(1290240*Pi*x + 2763810*Pi*x*Cos[Pi*x] -
165690*Pi^3*x^3*Cos[Pi*x] + 1680*Pi^5*x^5*Cos[Pi*x] -
2*Pi^7*x^7*Cos[Pi*x] - 1381905*Sin[Pi*x] +
871920*Pi^2*x^2*Sin[Pi*x] - 20580*Pi^4*x^4*Sin[Pi*x] +
84*Pi^6*x^6*Sin[Pi*x])/(1290240*Pi^9)
;[o]
-8483 Sin[Pi x]
--------------- + (1290240 Pi x + 2763810 Pi x Cos[Pi x] -
9
4096 Pi
3 3 5 5
165690 Pi x Cos[Pi x] + 1680 Pi x Cos[Pi x] -
7 7
2 Pi x Cos[Pi x] - 1381905 Sin[Pi x] +
2 2 4 4
871920 Pi x Sin[Pi x] - 20580 Pi x Sin[Pi x] +
6 6 9
84 Pi x Sin[Pi x]) / (1290240 Pi )
:[font = text; inactive; preserveAspect]
What beautiful functions!
You can hardly see the difference between the really accurate solution and the third order solution:
:[font = input; preserveAspect; startGroup]
Plot[{x+y1[x]+y2[x]+y3[x]+y4[x]+y5[x]+y6[x] \
+ y7[x]+y8[x], \
x+y1[x]+y2[x]+y3[x]}, {x,0,1}]
:[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 34; pictureWidth = 282; pictureHeight = 174]
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.952381 0.0147151 0.428639 [
[(0.2)] .21429 .01472 0 2 Msboxa
[(0.4)] .40476 .01472 0 2 Msboxa
[(0.6)] .59524 .01472 0 2 Msboxa
[(0.8)] .78571 .01472 0 2 Msboxa
[(1)] .97619 .01472 0 2 Msboxa
[(0.2)] .01131 .10044 1 0 Msboxa
[(0.4)] .01131 .18617 1 0 Msboxa
[(0.6)] .01131 .2719 1 0 Msboxa
[(0.8)] .01131 .35763 1 0 Msboxa
[(1)] .01131 .44335 1 0 Msboxa
[(1.2)] .01131 .52908 1 0 Msboxa
[(1.4)] .01131 .61481 1 0 Msboxa
[ -0.001 -0.001 0 0 ]
[ 1.001 .61903 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
[ ] 0 setdash
0 g
p
p
.002 w
.21429 .01472 m
.21429 .02097 L
s
P
[(0.2)] .21429 .01472 0 2 Mshowa
p
.002 w
.40476 .01472 m
.40476 .02097 L
s
P
[(0.4)] .40476 .01472 0 2 Mshowa
p
.002 w
.59524 .01472 m
.59524 .02097 L
s
P
[(0.6)] .59524 .01472 0 2 Mshowa
p
.002 w
.78571 .01472 m
.78571 .02097 L
s
P
[(0.8)] .78571 .01472 0 2 Mshowa
p
.002 w
.97619 .01472 m
.97619 .02097 L
s
P
[(1)] .97619 .01472 0 2 Mshowa
p
.001 w
.0619 .01472 m
.0619 .01847 L
s
P
p
.001 w
.1 .01472 m
.1 .01847 L
s
P
p
.001 w
.1381 .01472 m
.1381 .01847 L
s
P
p
.001 w
.17619 .01472 m
.17619 .01847 L
s
P
p
.001 w
.25238 .01472 m
.25238 .01847 L
s
P
p
.001 w
.29048 .01472 m
.29048 .01847 L
s
P
p
.001 w
.32857 .01472 m
.32857 .01847 L
s
P
p
.001 w
.36667 .01472 m
.36667 .01847 L
s
P
p
.001 w
.44286 .01472 m
.44286 .01847 L
s
P
p
.001 w
.48095 .01472 m
.48095 .01847 L
s
P
p
.001 w
.51905 .01472 m
.51905 .01847 L
s
P
p
.001 w
.55714 .01472 m
.55714 .01847 L
s
P
p
.001 w
.63333 .01472 m
.63333 .01847 L
s
P
p
.001 w
.67143 .01472 m
.67143 .01847 L
s
P
p
.001 w
.70952 .01472 m
.70952 .01847 L
s
P
p
.001 w
.74762 .01472 m
.74762 .01847 L
s
P
p
.001 w
.82381 .01472 m
.82381 .01847 L
s
P
p
.001 w
.8619 .01472 m
.8619 .01847 L
s
P
p
.001 w
.9 .01472 m
.9 .01847 L
s
P
p
.001 w
.9381 .01472 m
.9381 .01847 L
s
P
p
.002 w
0 .01472 m
1 .01472 L
s
P
p
.002 w
.02381 .10044 m
.03006 .10044 L
s
P
[(0.2)] .01131 .10044 1 0 Mshowa
p
.002 w
.02381 .18617 m
.03006 .18617 L
s
P
[(0.4)] .01131 .18617 1 0 Mshowa
p
.002 w
.02381 .2719 m
.03006 .2719 L
s
P
[(0.6)] .01131 .2719 1 0 Mshowa
p
.002 w
.02381 .35763 m
.03006 .35763 L
s
P
[(0.8)] .01131 .35763 1 0 Mshowa
p
.002 w
.02381 .44335 m
.03006 .44335 L
s
P
[(1)] .01131 .44335 1 0 Mshowa
p
.002 w
.02381 .52908 m
.03006 .52908 L
s
P
[(1.2)] .01131 .52908 1 0 Mshowa
p
.002 w
.02381 .61481 m
.03006 .61481 L
s
P
[(1.4)] .01131 .61481 1 0 Mshowa
p
.001 w
.02381 .03186 m
.02756 .03186 L
s
P
p
.001 w
.02381 .04901 m
.02756 .04901 L
s
P
p
.001 w
.02381 .06615 m
.02756 .06615 L
s
P
p
.001 w
.02381 .0833 m
.02756 .0833 L
s
P
p
.001 w
.02381 .11759 m
.02756 .11759 L
s
P
p
.001 w
.02381 .13473 m
.02756 .13473 L
s
P
p
.001 w
.02381 .15188 m
.02756 .15188 L
s
P
p
.001 w
.02381 .16902 m
.02756 .16902 L
s
P
p
.001 w
.02381 .20332 m
.02756 .20332 L
s
P
p
.001 w
.02381 .22046 m
.02756 .22046 L
s
P
p
.001 w
.02381 .23761 m
.02756 .23761 L
s
P
p
.001 w
.02381 .25475 m
.02756 .25475 L
s
P
p
.001 w
.02381 .28904 m
.02756 .28904 L
s
P
p
.001 w
.02381 .30619 m
.02756 .30619 L
s
P
p
.001 w
.02381 .32333 m
.02756 .32333 L
s
P
p
.001 w
.02381 .34048 m
.02756 .34048 L
s
P
p
.001 w
.02381 .37477 m
.02756 .37477 L
s
P
p
.001 w
.02381 .39192 m
.02756 .39192 L
s
P
p
.001 w
.02381 .40906 m
.02756 .40906 L
s
P
p
.001 w
.02381 .42621 m
.02756 .42621 L
s
P
p
.001 w
.02381 .4605 m
.02756 .4605 L
s
P
p
.001 w
.02381 .47764 m
.02756 .47764 L
s
P
p
.001 w
.02381 .49479 m
.02756 .49479 L
s
P
p
.001 w
.02381 .51194 m
.02756 .51194 L
s
P
p
.001 w
.02381 .54623 m
.02756 .54623 L
s
P
p
.001 w
.02381 .56337 m
.02756 .56337 L
s
P
p
.001 w
.02381 .58052 m
.02756 .58052 L
s
P
p
.001 w
.02381 .59766 m
.02756 .59766 L
s
P
p
.002 w
.02381 0 m
.02381 .61803 L
s
P
P
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
p
p
p
.004 w
.02381 .01472 m
.06349 .03259 L
.10317 .05056 L
.14286 .06873 L
.18254 .08718 L
.22222 .10601 L
.2619 .12531 L
.30159 .14515 L
.34127 .1656 L
.38095 .18674 L
.42063 .20863 L
.46032 .23131 L
.5 .25482 L
.53968 .2792 L
.57937 .30447 L
.61905 .33064 L
.65873 .35771 L
.69841 .38567 L
.7381 .41449 L
.77778 .44416 L
.81746 .47462 L
.85714 .50583 L
.89683 .53773 L
.93651 .57025 L
.97619 .60332 L
s
P
P
p
p
.004 w
.02381 .01472 m
.06349 .03259 L
.10317 .05056 L
.14286 .06873 L
.18254 .08718 L
.22222 .10601 L
.2619 .12531 L
.30159 .14515 L
.34127 .1656 L
.38095 .18674 L
.42063 .20863 L
.46032 .23131 L
.5 .25482 L
.53968 .2792 L
.57937 .30447 L
.61905 .33064 L
.65873 .35771 L
.69841 .38566 L
.7381 .41449 L
.77778 .44415 L
.81746 .4746 L
.85714 .5058 L
.89683 .53769 L
.93651 .57019 L
.97619 .60324 L
s
P
P
P
% End of Graphics
MathPictureEnd
:[font = output; output; inactive; preserveAspect; endGroup]
Graphics["<<>>"]
;[o]
-Graphics-
:[font = input; preserveAspect; startGroup]
Plot[{x+y1[x]+y2[x]+y3[x]+y4[x]+y5[x]+y6[x] \
+ y7[x]+y8[x], \
x+y1[x]+y2[x]+y3[x]}, {x,.99,1}]
:[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 34; pictureWidth = 282; pictureHeight = 174]
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
-94.2619 95.2381 -42.3896 31.3087 [
[(0.99)] .02381 .19024 0 2 Msboxa
[(0.992)] .21429 .19024 0 2 Msboxa
[(0.994)] .40476 .19024 0 2 Msboxa
[(0.996)] .59524 .19024 0 2 Msboxa
[(0.998)] .78571 .19024 0 2 Msboxa
[(1.355)] .96369 .0337 1 0 Msboxa
[(1.3575)] .96369 .11197 1 0 Msboxa
[(1.3625)] .96369 .26852 1 0 Msboxa
[(1.365)] .96369 .34679 1 0 Msboxa
[(1.3675)] .96369 .42506 1 0 Msboxa
[(1.37)] .96369 .50333 1 0 Msboxa
[(1.3725)] .96369 .5816 1 0 Msboxa
[ -0.001 -0.001 0 0 ]
[ 1.001 .61903 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
[ ] 0 setdash
0 g
p
p
.002 w
.02381 .19024 m
.02381 .19649 L
s
P
[(0.99)] .02381 .19024 0 2 Mshowa
p
.002 w
.21429 .19024 m
.21429 .19649 L
s
P
[(0.992)] .21429 .19024 0 2 Mshowa
p
.002 w
.40476 .19024 m
.40476 .19649 L
s
P
[(0.994)] .40476 .19024 0 2 Mshowa
p
.002 w
.59524 .19024 m
.59524 .19649 L
s
P
[(0.996)] .59524 .19024 0 2 Mshowa
p
.002 w
.78571 .19024 m
.78571 .19649 L
s
P
[(0.998)] .78571 .19024 0 2 Mshowa
p
.001 w
.0619 .19024 m
.0619 .19399 L
s
P
p
.001 w
.1 .19024 m
.1 .19399 L
s
P
p
.001 w
.1381 .19024 m
.1381 .19399 L
s
P
p
.001 w
.17619 .19024 m
.17619 .19399 L
s
P
p
.001 w
.25238 .19024 m
.25238 .19399 L
s
P
p
.001 w
.29048 .19024 m
.29048 .19399 L
s
P
p
.001 w
.32857 .19024 m
.32857 .19399 L
s
P
p
.001 w
.36667 .19024 m
.36667 .19399 L
s
P
p
.001 w
.44286 .19024 m
.44286 .19399 L
s
P
p
.001 w
.48095 .19024 m
.48095 .19399 L
s
P
p
.001 w
.51905 .19024 m
.51905 .19399 L
s
P
p
.001 w
.55714 .19024 m
.55714 .19399 L
s
P
p
.001 w
.63333 .19024 m
.63333 .19399 L
s
P
p
.001 w
.67143 .19024 m
.67143 .19399 L
s
P
p
.001 w
.70952 .19024 m
.70952 .19399 L
s
P
p
.001 w
.74762 .19024 m
.74762 .19399 L
s
P
p
.001 w
.82381 .19024 m
.82381 .19399 L
s
P
p
.001 w
.8619 .19024 m
.8619 .19399 L
s
P
p
.001 w
.9 .19024 m
.9 .19399 L
s
P
p
.001 w
.9381 .19024 m
.9381 .19399 L
s
P
p
.002 w
0 .19024 m
1 .19024 L
s
P
p
.002 w
.97619 .0337 m
.98244 .0337 L
s
P
[(1.355)] .96369 .0337 1 0 Mshowa
p
.002 w
.97619 .11197 m
.98244 .11197 L
s
P
[(1.3575)] .96369 .11197 1 0 Mshowa
p
.002 w
.97619 .26852 m
.98244 .26852 L
s
P
[(1.3625)] .96369 .26852 1 0 Mshowa
p
.002 w
.97619 .34679 m
.98244 .34679 L
s
P
[(1.365)] .96369 .34679 1 0 Mshowa
p
.002 w
.97619 .42506 m
.98244 .42506 L
s
P
[(1.3675)] .96369 .42506 1 0 Mshowa
p
.002 w
.97619 .50333 m
.98244 .50333 L
s
P
[(1.37)] .96369 .50333 1 0 Mshowa
p
.002 w
.97619 .5816 m
.98244 .5816 L
s
P
[(1.3725)] .96369 .5816 1 0 Mshowa
p
.001 w
.97619 .04936 m
.97994 .04936 L
s
P
p
.001 w
.97619 .06501 m
.97994 .06501 L
s
P
p
.001 w
.97619 .08066 m
.97994 .08066 L
s
P
p
.001 w
.97619 .09632 m
.97994 .09632 L
s
P
p
.001 w
.97619 .12763 m
.97994 .12763 L
s
P
p
.001 w
.97619 .14328 m
.97994 .14328 L
s
P
p
.001 w
.97619 .15894 m
.97994 .15894 L
s
P
p
.001 w
.97619 .17459 m
.97994 .17459 L
s
P
p
.001 w
.97619 .2059 m
.97994 .2059 L
s
P
p
.001 w
.97619 .22155 m
.97994 .22155 L
s
P
p
.001 w
.97619 .23721 m
.97994 .23721 L
s
P
p
.001 w
.97619 .25286 m
.97994 .25286 L
s
P
p
.001 w
.97619 .28417 m
.97994 .28417 L
s
P
p
.001 w
.97619 .29983 m
.97994 .29983 L
s
P
p
.001 w
.97619 .31548 m
.97994 .31548 L
s
P
p
.001 w
.97619 .33113 m
.97994 .33113 L
s
P
p
.001 w
.97619 .36244 m
.97994 .36244 L
s
P
p
.001 w
.97619 .3781 m
.97994 .3781 L
s
P
p
.001 w
.97619 .39375 m
.97994 .39375 L
s
P
p
.001 w
.97619 .40941 m
.97994 .40941 L
s
P
p
.001 w
.97619 .44071 m
.97994 .44071 L
s
P
p
.001 w
.97619 .45637 m
.97994 .45637 L
s
P
p
.001 w
.97619 .47202 m
.97994 .47202 L
s
P
p
.001 w
.97619 .48768 m
.97994 .48768 L
s
P
p
.001 w
.97619 .51899 m
.97994 .51899 L
s
P
p
.001 w
.97619 .53464 m
.97994 .53464 L
s
P
p
.001 w
.97619 .5503 m
.97994 .5503 L
s
P
p
.001 w
.97619 .56595 m
.97994 .56595 L
s
P
p
.001 w
.97619 .01805 m
.97994 .01805 L
s
P
p
.001 w
.97619 .00239 m
.97994 .00239 L
s
P
p
.001 w
.97619 .59726 m
.97994 .59726 L
s
P
p
.001 w
.97619 .61291 m
.97994 .61291 L
s
P
p
.002 w
.97619 0 m
.97619 .61803 L
s
P
P
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
p
p
p
.004 w
.02381 .02023 m
.06349 .04449 L
.10317 .06875 L
.14286 .09301 L
.18254 .11727 L
.22222 .14154 L
.2619 .16582 L
.30159 .19009 L
.34127 .21437 L
.38095 .23865 L
.42063 .26294 L
.46032 .28723 L
.5 .31152 L
.53968 .33582 L
.57937 .36012 L
.61905 .38443 L
.65873 .40873 L
.69841 .43304 L
.7381 .45736 L
.77778 .48168 L
.81746 .506 L
.85714 .53032 L
.89683 .55465 L
.93651 .57898 L
.97619 .60332 L
s
P
P
p
p
.004 w
.02381 .01472 m
.06349 .03895 L
.10317 .06319 L
.14286 .08743 L
.18254 .11168 L
.22222 .13593 L
.2619 .16018 L
.30159 .18444 L
.34127 .2087 L
.38095 .23296 L
.42063 .25723 L
.46032 .2815 L
.5 .30577 L
.53968 .33005 L
.57937 .35433 L
.61905 .37861 L
.65873 .4029 L
.69841 .42719 L
.7381 .45148 L
.77778 .47578 L
.81746 .50008 L
.85714 .52439 L
.89683 .54869 L
.93651 .573 L
.97619 .59732 L
s
P
P
P
% End of Graphics
MathPictureEnd
:[font = output; output; inactive; preserveAspect; endGroup; endGroup]
Graphics["<<>>"]
;[o]
-Graphics-
^*)