Part b) Find the Fourier Series for the functions f(x)=x^2, x^3, and x^4 on the interval [0,1]

In[42]:=
  f[x_] := x^2

In[43]:=

  a[0] := (1/1) Integrate[f[x], {x,0,1}]

In[44]:=

  a[0]

Out[44]=

  1
  -
  3

This is the value of the constant term, a0 (the average of the function).

In[45]:=

  a[m_] := (2/1) Integrate[f[x]*Cos[2 m Pi x/1], {x,0,1}]

In[46]:=

  a[m]

Out[46]=

                                        2   2
  2 m Pi Cos[2 m Pi] - Sin[2 m Pi] + 2 m  Pi  Sin[2 m Pi]
  -------------------------------------------------------
                            3   3
                         2 m  Pi

In[47]:=

  % /. TrigId

Out[47]=

      2 m
  (-1)
  -------
   2   2
  m  Pi

I will introduce another simplifying function, goodId.

In[48]:=

  goodId = {(-1)^(2*n_) -> 1}

Out[48]=

       2 (n_)
  {(-1)       -> 1}

In[49]:=

  a[m] /. TrigId /. goodId

Out[49]=

    1
  ------
   2   2
  m  Pi

These are the coefficients am--the coefficients of the Cosine terms.

In[50]:=

  b[n_] := (2/1) Integrate[f[x]*Sin[2 n Pi x/1], {x,0,1}]

In[51]:=

  Simplify[b[n] /. TrigId]  /. goodId

Out[51]=

     1
  -(----)
    n Pi

These are the coefficients bn for the Sine terms.

In[52]:=

  Clear[FullSeries]

Here is the F Series for x^2 on [0,1].

In[53]:=

  FullSeries[x_,N_] := 1/3 + \
        Sum[(1/((m^2)(Pi^2)))Cos[2 Pi m x/(1)],{m,1,N}] + \
        Sum[(-1/(n Pi))Sin[2 Pi n x/1],{n,1,N}] 

In[54]:=

  Plot[{FullSeries[x,2], f[x]}, {x,0,1}]

Out[55]=

  -Graphics-

In[56]:=

  Plot[{FullSeries[x,8], f[x]}, {x,0,1}]

Out[57]=

  -Graphics-

Now, let's find the Fourier Series for x^3 over the interval [0,1].

In[58]:=

  f[x_] := x^3

In[59]:=

  a[0] := (1/1) Integrate[f[x], {x,0,1}]

In[60]:=

  a[0]

Out[60]=

  1
  -
  4

This is the value of the constant term, a0.

In[61]:=

  a[m_] := (2/1) Integrate[f[x]*Cos[2 m Pi x/1], {x,0,1}]

In[62]:=

  Simplify[a[m]  /. TrigId  /. goodId]

Out[62]=

     3
  --------
     2   2
  2 m  Pi

These are the coefficients am--the coefficients of the Cosine terms.

In[63]:=

  b[n_] := (2/1) Integrate[f[x]*Sin[2 n Pi x/1], {x,0,1}]

In[64]:=

  Simplify[b[n]  /. TrigId  /. goodId]

Out[64]=

         2   2
  3 - 2 n  Pi
  ------------
       3   3
    2 n  Pi

These are the coefficients bn for the Sine terms.

In[65]:=

  Clear[FullSeries]

Here is the F Series for x^3 on [0,1].

In[66]:=

  FullSeries[x_,N_] := 1/4 + \
        Sum[(3/(2(m^2)(Pi^2)))Cos[2 Pi m x/(1)],{m,1,N}] + \
        Sum[((3 - 2*n^2*Pi^2)/(2*n^3*Pi^3))Sin[2 Pi n x/1],{n,1,N}] 

Now, let's find the Fourier Series for x^4 over the interval [0,1].

In[67]:=

  f[x_] := x^4

In[68]:=

  a[0] := (1/1) Integrate[f[x], {x,0,1}]

In[69]:=

  a[0]

Out[69]=

  1
  -
  5

This is the value of the constant term, a0.

In[70]:=

  a[m_] := (2/1) Integrate[f[x]*Cos[2 m Pi x/1], {x,0,1}]

In[71]:=

  Simplify[a[m]  /. TrigId  /. goodId]

Out[71]=

          2   2
  -3 + 2 m  Pi
  -------------
      4   4
     m  Pi

These are the coefficients am--the coefficients of the Cosine terms.

In[72]:=

  b[n_] := (2/1) Integrate[f[x]*Sin[2 n Pi x/1], {x,0,1}]

In[73]:=

  Simplify[b[n]  /. TrigId  /. goodId]

Out[73]=

       2   2
  3 - n  Pi
  ----------
     3   3
    n  Pi

These are the coefficients bn for the Sine terms.

In[74]:=

  Clear[FullSeries]

Here is the F Series for x^4 on [0,1].

In[75]:=

  FullSeries[x_,N_] := 1/5 + \
        Sum[((-3 + 2 m^2 Pi^2)/((m^4)(Pi^4)))Cos[2 Pi m x/(1)],{m,1,N}] + \
        Sum[((3 - n^2*Pi^2)/(n^3*Pi^3))Sin[2 Pi n x/1],{n,1,N}] 

Up to Solution to Problem IV.5