Linear Methods of Applied Mathematics
Evans M. Harrell II and James V. Herod*
At Georgia Tech, students took 50 minutes (calculators allowed but no notes). Most students did reasonably well, but few finished early.
1. Find the normal modes (product solutions) for the damped wave equation
utt + ut = uxx
for 0 < x < 1, with boundary conditions:
ux(t,0) = 0
u(t,1) = 0
Make sure to give the specific dependence on x and on t.
THE NORMAL MODES ARE:_____________________________________________
FORMULA OR KEY FACT (FOR POSSIBLE PARTIAL CREDIT):_________
________________________________________________________________
2. Solve the wave equation
utt = uxx
for 0 < x < 1, with boundary conditions
ux(t,0) = ux(t,1) = 0
and initial conditions
u(0,x) = sin2( \pi x)
ut(0,x) = 0
THE GENERAL SOLUTION APPROPRIATE TO THIS PDE WITH THE BC IS:
____________________________________________________________________
SPECIFIC SOLUTION:
u(t,x) = ______________________________________________________________
FORMULA OR KEY FACT (FOR POSSIBLE PARTIAL CREDIT):_________
________________________________________________________________
> int(sin(a*x) * (sin(b*x))^2, x);
cos(a x) cos((a + 2 b) x) cos((a - 2 b) x)
- 1/2 -------- + 1/4 ---------------- + 1/4 ----------------
a a + 2 b a - 2 b
> int(cos(a*x) * (sin(b*x))^2, x);
sin(a x) sin((a - 2 b) x) sin((a + 2 b) x)
1/2 -------- - 1/4 ---------------- - 1/4 ----------------
a a - 2 b a + 2 b
> int(sin(2*b*x) * (sin(b*x))^2, x);
cos(2 b x) cos(4 b x)
- 1/4 ---------- + 1/16 ----------
b b
> int(cos(2*b*x) * (sin(b*x))^2, x);
sin(2 b x) sin(4 b x)
1/4 ---------- - 1/16 ---------- - 1/4 x
b b
> ODE := diff(y(t), t$2) + diff(y(t), t) = - mu * y(t);
/ 2 \
| d | / d \
ODE := |----- y(t)| + |---- y(t)| = - mu y(t)
| 2 | \ dt /
\ dt /
> dsolve( ODE, y(t) );
y(t) =
1/2 1/2
_C1 exp(1/2 (- 1 + (1 - 4 mu) ) t) + _C2 exp(- 1/2 (1 + (1 - 4 mu)) t)
Recall that in this formula, if the square root is imaginary, you can
solve instead with
y(t) =
1/2 1/2
exp(- t/2) ( C1 cos(((4 mu - 1) /2) t) + C2 sin(((4 mu - 1) /2) t) )
by using Euler's formula.
Back to Chapter VII
Return to Evans Harrell's home page